



## How Mask Matters:

### Towards Theoretical Understandings of Masked Autoencoders

NeurIPS 2022

Presented by Yifei Wang\* (PKU)

Joint work with Qi Zhang\* (PKU), Yisen Wang (PKU)

### **Masked AutoEncoders**



- Development of Self-Supervised Learning (SSL) Paradigms
  - 2019-2021: Contrastive Learning (SimCLR, MoCo, BYOL, Barlow Twins, ...)
  - 2021-now: Masked Autoencoder (MAE) (He et al., 2021)



• MAE Objective (encoder f, decoder g, whole model  $h = g \circ f$ )

$$\mathcal{L}_{\text{MAE}}(h) = \mathbb{E}_{\bar{x}} \mathbb{E}_{x_1, x_2 \mid \bar{x}} \left\| g(f(x_1)) - x_2 \right\|^2$$

Figure from https://github.com/facebookresearch/mae under Creative Commons License

## **Mysteries of MAE**

- MAE = autoencoder + masking
- Autoencoder
  - As a generative model, MAE has poor reconstruction quality from masked inputs



- Masking
  - MAE adopts a very large mask ratio (75%)
  - Most image semantics are lost
- Our perspective
  - Reconstruction is only a surrogate task for representation learning
  - Question: What is the role of masking? How does it affect downstream performance?



## **MAE Implicitly Performs Contrastive Learning**



$$\mathcal{L}_{MAE}(h) = \mathbb{E}_{\bar{x}} \mathbb{E}_{x_1, x_2 | \bar{x}} \| g(f(x_1)) - x_2 \|^2,$$



#### Main Theorem: A small MAE loss implies good alignment of positive input pairs

**Theorem 3.4.** Under Assumption 3.1, MAE's reconstruction loss (Eq. (2)) can be lower bounded by the alignment loss between positive pairs  $(x_1, x_1^+) \sim \mathcal{A}(x_1, x_1^+)$ ,

$$\mathcal{L}_{\textit{MAE}}(h) \geq rac{1}{2} \mathcal{L}_{\textit{align}}(h) - arepsilon + const.$$

$$\mathcal{L}_{ ext{align}}(h) = -\mathbb{E}_{x_1,x_1^+}h(x_1)^ op h(x_1^+).$$

(7)

#### Feature Collapse in MAE: Implicit Regularizations and Limitations



- MAE can avoid full feature collapse
  - Fully collapsed encoder suffers from a large MAE loss

**Theorem 3.6.** When the encoder fully collapses, i.e.,  $\forall x \in \mathcal{X}_1, f(x) = c$ , the MAE loss has a large lower bound:

$$\mathcal{L}_{MAE}(h) \ge \operatorname{Var}(x_2),\tag{9}$$

where  $Var(x_2)$  denotes the variance of masked targets computed on the training dataset.

MAE still suffers from Dimensional Collapse



- Uniformity-enhanced MAE (U-MAE): promote feature diversity with an explicit uniformity loss
  - minimizes the similarities of randomly drawn **negative input pairs**  $(x_1, x_1)$

 $\mathcal{L}_{\text{U-MAE}}(h) = \mathcal{L}_{\text{MAE}}(h) + \lambda \cdot \mathcal{L}_{\text{unif}}(f),$ where  $\mathcal{L}_{\text{unif}}(f) = \mathbb{E}_{x_1} \mathbb{E}_{x_1^-} (f(x_1)^\top f(x_1^-))^2,$ 

### **Downstream Generalization of Masked Autoencoders**



#### Based on this connection, we provide theoretical guarantees on downstream performance

**Theorem 4.1.** Denote the mask-induced label error as  $\alpha = \mathbb{E}_{\bar{x},x_1} \mathbb{1}[y(x_1) \neq y(\bar{x})]$ . Then, for  $\forall h \in \mathcal{H}$  (the hypothesis class) with  $h = g \circ f$ , the downstream classification error of its encoder can be upper bounded by its U-MAE pretraining loss:  $\Pr(\bar{y} \neq p_f(\bar{x})) \leq c_1 L$   $\mathcal{L}_{U-MAE}(h) + c_2 \alpha + c_3 L \varepsilon + c_4$ , (14) where  $c_1, \ldots, c_4$  are constants and  $c_3 > 1$ . Label error

• The minimal U-MAE loss is determined by the connectivity of the augmentation graph

**Theorem 4.2.** The U-MAE pretraining loss has the following common lower bound:

$$\forall h \in \mathcal{H}, \quad \mathcal{L}_{U\text{-MAE}}(h) \geq \frac{1}{4L} \sum_{i=k+1}^{N_1} \lambda_i^2 - \varepsilon + const, \quad (15)$$
denote the eigenvalues of  $A$ .
Graph connectivity

where  $\lambda_1 \geq \cdots \geq \lambda_{N_1}$  denote the eigenvalues of A.

#### According to the theory, we need

- Powerful backbone
  - Capable of vanilla autoencoding
- A large mask ratio
  - Increase intra-class edges
- Not too large mask ratio
  - Fewer inter-class edges



intra-class and inter-class tween intra-class samples samples and inter-class samples

Empirical verification agrees with MAE's choice of mask ratio

### **Experiments**



- U-MAE improves MAE a lot on the linear probing task
  - 9% ↑ on CIFAR-10, 8% ↑ on ImageNet-100, 3% ↑ on ImageNet-1K
  - no degradation on the fully finetuning task

|                 |              | CIFAR-10            |                     | ImageNet-100        |                     | Image               | Net-1K              |
|-----------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Downstream Task | Method       | ViT-Tiny            | ViT-Base            | ViT-Base            | ViT-Large           | ViT-Base            | ViT-Large           |
| Linear Probing  | MAE<br>U-MAE | 59.6<br><b>68.9</b> | 61.7<br><b>70.2</b> | 61.2<br><b>67.5</b> | 64.4<br><b>72.8</b> | 55.4<br><b>58.5</b> | 62.2<br><b>65.8</b> |
| Fine-tuning     | MAE<br>U-MAE | <b>89.6</b><br>89.4 | 90.7<br><b>90.8</b> | 86.9<br>86.8        | 87.3<br>87.3        | 82.9<br><b>83.0</b> | <b>83.3</b><br>83.2 |
|                 |              |                     |                     |                     |                     |                     |                     |

- Also effective on other MIM methods, such as SimMIM, named U-SimMIM
  - 7%↑ on ImageNet-100

| Table 2<br>U-SimN | : Linear pro<br>/IM (ViT-B | obing accuracy<br>ase) on ImageN | y (%) of<br>Net-100. |
|-------------------|----------------------------|----------------------------------|----------------------|
|                   | SimMIM                     | U-SimMIM                         |                      |
|                   | 54.3                       | 61.1                             |                      |

#### PEKING UNIVERSITY

## **Take Home Messages**

- MAE  $\approx$  contrastive learning
  - masking also induces positive pairs!
- MAE still suffers from dimensional collapse
  - can be resolved by U-MAE with uniformity regularization!
- Theoretical guarantees on downstream performance
  - which explains the choice of large mask ratio
- Tips for designing masks
  - increase intra-class edges (requires a large mask ratio)
  - avoid inter-class edges (not too large to distort belonging classes)



# Thanks for Listening!

Yifei Wang (Peking University)

Contact <u>yifei\_wang@pku.edu.cn</u> for further questions