

Improving Out-of-Distribution Generalization by Adversarial Traing with Structured Priors

Qixun Wang^{*1}, Yifei Wang^{*1}, Hong Zhu², Yisen Wang¹ ¹Peking University ²Huawei Noah' s Ark Lab Neural Information Processing Systems (NeurIPS 2022)

Out-of-distribution (OOD) Generalization:

- Train on *m* training domains $\mathcal{E} = \{E_1, E_2, \dots, E_m\}, E_e \sim \mathcal{P}_e$
- Test domain $E_{m+1}, E_{m+1} \sim \mathcal{P}_{te}$
- $\mathcal{P}_{te} \neq \mathcal{P}_i$

Object: $\min_{f} \mathbb{E}_{(x,y) \sim \mathcal{P}_{te}(x,y)} [\mathcal{L}(f(x),y)]$

Adversarial Training (AT):

Optimization problem:

$$\min_{f} \mathbb{E}_{(x,y)\sim\mathcal{P}(x,y)}iggl[\max_{\delta\in\mathcal{S}}\mathcal{L}(f(x+\delta),y)iggr] ext{ s.t. } \|\delta\|_p\leq\epsilon,$$

Inner maximization can be solved by: FGSM $x = x + \epsilon \operatorname{sgn}(\nabla_x \mathcal{L}(f(x), y))$ or PGD $x^{t+1} = \prod (x^t + \gamma \operatorname{sgn}(\nabla_x \mathcal{L}(f(x), y)))$

Ian Goodfellow et al., 2014

Solve

originally for

defending

 $\epsilon sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y}))$ "gibbon" 99.3 % confidence

Previous work of using AT to address OOD

[Yi et al, 2021][Volpi et al, 2018]:

1. Use Wasserstein distance, less practical

2. No further investigation on the effect of different forms of AT

[Herrmann et al, 2021]

Do not exploit the universal spurious information (background/style)

verify the weaknesses

Our findings

	Datasets				
Algorithm	PACS	OfficeHome	VLCS	NICO	avg
ERM	79.7 ± 0.0	59.6 ± 0.0	74.4 ± 1.0	$\textbf{70.7} \pm \textbf{1.0}$	71.1
AT	$\textbf{81.5} \pm \textbf{0.4}$	$\textbf{59.9} \pm \textbf{0.4}$	$\textbf{75.3} \pm \textbf{0.7}$	68.2 ± 2.2	71.2

The improvement of sample-wise AT is marginal.

Limited, not effective enough

conclude

Our Methods: MAT & LDAT

Low-rank, domain-wise structures are beneficial for OOD!

Reduce the rank of the adversarial perturbations along two orientations:

1. Reduce number of the perturbations used in a domain

2. Reduce the rank of a single perturbation matrix

what LDAT does

Low-rank, domain-wise structures are beneficial for OOD!

NEURAL INFORMATION PROCESSING SYSTEMS

The Proposed Structured AT Method

The Proposed Structured AT Method MAT: AT with Combinations of Multiple Perturbations

$$egin{aligned} & \min_{s} \sum \mathbb{E}_{(x,y) \sim \mathcal{P}_e(x,y)} [\mathcal{L}(f(x+\delta^e),y)] \ & ext{s.t.} \ \delta^e = \sum_{i=1}^k lpha_i^{e*} \delta_i^{e*}, \|\delta_i^{e*}\|_p \leq \epsilon, \sum_{i=1}^k lpha_i^{e*} = 1, lpha_i^{e*} \geq 0 ext{ for } i = 1,2,\ldots,k \ & lpha_i^{e*}, \delta_i^{e*} = rgmax_{lpha_i^e,\delta_i^e} \mathbb{E}_{(x,y) \sim \mathcal{P}_e(x,y)} iggl[\mathcal{L}iggl(f\left(x+\sum_{i=1}^k lpha_i^e \delta_i^e
ight),yiggr) iggr] \end{aligned}$$

• Reducing the number of perturbations from n_e to k

Reduce the number of the perturbations \checkmark used in a domain Maintain some diverse structures to model more \checkmark complex background

The Proposed Structured AT Method LDAT: Adversarial Training with Low-rank Decomposed Perturbations

$$\min_{f} \sum_{e} \mathbb{E}_{(x,y)\sim\mathcal{P}_{e}(x,y)} [\mathcal{L}(f(x+\delta^{e}),y)], ext{ s.t. } \delta^{e} = A^{e*}B^{e*}, \left\|\delta^{e}
ight\|_{p} \leq \epsilon,$$

$$A^{e*}, B^{e*} = rgmax_{A^e,B^e} \mathbb{E}_{(x,y)\sim\mathcal{P}_e(x,y)}[\mathcal{L}(f(x+A^eB^e),y)], A^e \in \mathcal{R}^{N imes l imes C}, B^e \in \mathcal{R}^{l imes N imes C}$$

- Domain-wise perturbation
- Perturbation is low-rank: $\delta = AB$, A and B are matrices with rank $\leq l$.
- Reducing the number of perturbations from n_e to 1.
- Reducing the rank of a single perturbation from *N* (input hight/width) to *l*.

Reduce the number of the perturbations ✓ used in a domain

Further reduce the rank of a single perturbation matrix

Theoretical Analysis

• Our results:

$$\Omega \! \left(\mathbb{E}_{(x_{inv},y) \sim \mathcal{D}_{inv}} \! \left[rac{rac{1}{eta + \delta y} \! \ln \! \left[rac{c_1 + p}{c_2 + p^{rac{1}{2} - \epsilon} (1 - p)^{rac{1}{2} + \epsilon}}
ight]}{M \ln(t + 1)}
ight]
ight) \leq rac{w_{sp}(t) eta}{|w_{inv}(t) x_{inv}|},$$

Remark:

- 1. Term $\frac{w_{sp}(t)\beta}{|w_{inv}(t)x_{inv}|}$ denotes the reliance of the model on spurious features.
- 2. *p* measures how strong the spurious correlation is
- 3. When using domain-wise perturbation adopted by MAT or LDAT, the lower bound of the reliance on spurious features does not increase with p monotonically. However, when conducting ERM, this lower bound grows with p monotonically.

MAT/LDAT is better than ERM on OOD data!

Experiments

• On Domainbed, an OOD generalization benchmark

			Datasets						
Algorithm	PACS	OfficeHome	VLCS	NICO	CMNIST	avg^1	avg^2	avg^3	avg^4
ERM (Our runs) AT (Our runs)	$\begin{array}{c} 81.7 \pm 0.3 \\ 82.6 \pm 0.4 \end{array}$	$\begin{array}{c} 62.1 \pm 0.1 \\ 62.1 \pm 0.3 \end{array}$	$\begin{array}{c} 74.4\pm1.0\\ \textbf{76.2}\pm\textbf{0.3} \end{array}$	$\begin{array}{c} 73.2 \pm 1.9 \\ 69.7 \pm 1.6 \end{array}$	$\begin{array}{c} 28.1 \pm 1.5 \\ 29.1 \pm 1.5 \end{array}$	61.3 60.9	63.9 64.3	72.3 71.5	72.9 72.7
ERM[21]	81.5 ± 0.0	63.3 ± 0.2	-	71.4 ± 1.3	29.9 ± 0.1	61.5	-	72.1	-
RSC 24	82.8 ± 0.4	62.9 ± 0.4	-	69.7 ± 0.3	28.6 ± 1.5	61.0	-	71.8	-
MMD ²⁵	81.7 ± 0.2	63.8 ± 0.1	-	68.3 ± 1.8	50.7 ± 0.1	66.1	-	71.3	-
SagNet 26	81.6 ± 0.4	62.7 ± 0.4	-	69.3 ± 1.0	30.5 ± 0.7	61.0	-	71.2	-
CORAL 27	81.6 ± 0.6	63.8 ± 0.3	-	68.3 ± 1.4	30.0 ± 0.5	61.0	-	71.2	-
IRM 1	81.1 ± 0.3	63.0 ± 0.2	-	67.6 ± 1.4	60.2 ± 2.4	68.0	-	70.6	-
VREx 23	81.8 ± 0.1	63.5 ± 0.1	-	71.0 ± 1.3	56.3 ± 1.9	68.2	-	72.1	-
GroupDRO 28	80.4 ± 0.3	63.2 ± 0.2	-	71.8 ± 0.8	32.5 ± 0.2	62.0	-	71.8	-
DANN 29	81.1 ± 0.4	62.9 ± 0.6	-	68.6 ± 1.1	24.5 ± 0.8	59.3	-	70.9	-
MTL 30	81.2 ± 0.4	62.9 ± 0.2	-	70.2 ± 0.6	29.3 ± 0.1	60.9	-	71.4	-
Mixup[31]	79.8 ± 0.6	63.3 ± 0.5	-	66.6 ± 0.9	27.6 ± 1.8	59.3	-	69.9	-
ANDMask 32	79.5 ± 0.0	62.0 ± 0.3	-	72.2 ± 1.2	27.2 ± 1.4	60.2	-	71.2	-
MLDG[33]	73.0 ± 0.4	52.4 ± 0.2	-	51.6 ± 6.1	32.7 ± 1.1	52.4	-	59.0	-
MAT (Our work)	82.3 ± 0.5	64.5 ± 2.1	74.6 ± 0.8	74.2 ± 1.5	65.4 ± 8.1	71.6	72.2	73.7	73.9
LDAI (Our Work)	$\delta 2.0 \pm 0.3$	01.0 ± 0.9	75.5 ± 0.3	74.4 ± 1.0	52.5 ± 5.4	0.10	09.1	12.1	15.5

• MAT and LDAT outperform ERM and AT, ranked 1st and 4th among all algorithms.

• MAT and LDAT beat GUT (Volpi et al, 2018) and NCDG (Tian et al, 2022), two data augmentation methods for OOD

ERM	MAT	LI	DAT	GU	Т
73.2 ± 1.9	$\textbf{74.2} \pm \textbf{1}$.5 74	$.4 \pm 1.0$	6 66.	6 ± 1.7
Algorithm	А	С	Р	S	avg
MAT	- 78.5 80.9	73.8	94.1 94.2	74 75.9 76.6	80.6 82.9 77.1
	80.4	76.3	93.3	-	83.3
LDAT	- 77.2 78.5 74.3	74.8 - 77.9 76.4	94.2 93.9 - 94.7	75.8 75.6 80.4	81.6 82.3 79 81.8
NCDG	- 71.6 68.8 45.6	68.6 - 29.8 65.8	95.0 85.8 - 47.9	66.4 71.9 48.6 -	76.6 76.4 49.0 53.1

Experiments

NEURAL INFORMATION PROCESSING SYSTEMS

• Visualization (GradCam)

• Impact of the rank hyperparameter *k* (MAT) and *l* (LDAT)

• MAT and LDAT better focus on the object rather than background.

Insights:

- rank is samll enough: good performance \checkmark
- rank is too samll or too big: bad performance

Thanks!