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Motivation

e Multi-view methods become dominant for
unsupervised learning
* SIMCLR, MoCo, BYOL, SimSiam, etc

* For each input x, we get two views, x1, x2 by
random augmentation

e Learn to align augmented views x1, x2 by
minimizing representation distances

UNIPp

v EK
.:14/‘
«ILISe

18989



UNIPp

Motivation

v EK
.:14/‘
«ILISe

e Multi-view methods become dominant for
unsupervised learning
* SIMCLR, MoCo, BYOL, SimSiam, etc

* For each input x, we get two views, x1, x2 by
random augmentation

e Learn to align augmented views x1, x2 by
minimizing representation distances
* Observation

* Pretext (e.g. image augmentation) has a large
effect on the final performance



Motivation

* Multi-view methods become dominant for
unsupervised learning 8
 SimCLR, MoCo, BYOL, SimSiam, etc S
* For each input x, we get two views, x1, x2 by I
random augmentation
* Learn to align augmented views x1, x2 by 2
minimizing representation distances
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* Pretext (e.g. image augmentation) has a large
effect on the final performance
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* Some augmentations, like rotation, are too SimSiam [5] 01.8
strong to be aligned exactly SimSiam + margin loss 91.9
Rotation [9] 88.3
SimSiam + rotation aug. 879

SimSiam + Rotation loss 91.7
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Motivation

e Multi-view methods become dominant for

How to cultivate stronger augmentations (like rotation) to

design better multi-view methods?

e Learn to align augmented views x1, x2 by
minimizing representation distances

° Obse rvation Raw  HorizontalFlip GrayScale  Colorlitter  Rotation
* Pretext (e.g. image augmentation) has a large
effect on the final perfc?rmance. Method Acc (%)
* Some augmentations, like rotation, are too SimSiam [5] 91.8
strong to be aligned exactly SimSiam + margin loss 91.9
* However, rotation is I§nown as an effective < Rotation [9] 88.3
signal for Self-supervised Learning SimSiam + rotation aug. 87.9

SimSiam + Rotation loss 91.7



What does not work...

* Direct combination of multi-view and
pretext-predictive objectives
* Pretext-invariance and Pretext-awareness
* Two goals are contradictory to each other
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Method Acc (%)
SimSiam [5] 91.8
SimSiam + margin loss 91.9
Rotation [9] 88.3
SimSiam + rotation aug. 87.9
SimSiam + Rotation loss 917



What does not work...

* Direct combination of pretext-invariant
and pretext-aware objectives

* Pretext-awareness and Pretext-invariance
* Two goals are contradictory to each other

* Use a margin loss to relax the alignment
Lonegin (¢,:6) = max (|G (Fo(x')) — Fa ()3~ n,0)

* the representation space keeps shifting
e difficult to choose a universal tolerance

UNIPp

E

v KI(‘,
@

«ILISe

1898

Method Acc (%)
SimSiam [5] 91.8
SimSiam + margin loss 91.9
Rotation [9] 88.3
SimSiam + rotation aug. 87.9
SimSiam + Rotation loss 91.7



What does not work...

* Direct combination of pretext-invariant

Find an adaptive relaxation for each input!

* Use a margin loss to relax the alignment

Method Acc (%)
, , 2 SimSiam [5 91.8
Linsegn (x',;6) = max || Go (Fo (x')) — Fy(x)[|3 —m,0) SimSiam + Enargin loss 919
* the representation space keeps shifting Rotation [9] 88.3

SimSiam + rotation aug. 87.9
e difficult to choose a universal tolerance SimSiam + Rotationloss ~ 91.7



Our Solution: Residual Relaxation

e Use residuals to account for the semantic shift
brought by augmentations

* Exact alignment fails for strong augmentation

l 7 < 7

* Identity alignment always holds instead

exact alignment residual alignment

(b) A toy example of residual relaxation.

7z < zZ4+r

* wherer = z’ — Z encodes the semantic shift



Pretext-aware Residual Relaxation (Prelax)

e Baseline: similarity loss for x"=t(x)
Lam (X', %;0) = |[Go(Fo(x)) — Fo(x)]5

* Fyg online network, F target network, Gg online prediction network



Pretext-aware Residual Relaxation (Prelax)

* Baseline: similarity loss

* Fg online network, Fy target network, Gy online prediction network

* Prelax (ours)
* Exact Alignment -> Identity Alignment

r £ zy — 29 = Fo(x') — Fo(x)

Go (zfg) —<— 2y = G (ng) — Go(r) =< Zy

» Residual Relaxed Similarity (R2S) loss (« is the interpolating coefficient)

Lias(x',%;0) = [|Go (Fo(x')) — aGo(r) — Fo(x)]I2.
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* Prelax (ours)
e Residual Relaxed Similarity loss (« is the interpolating coefficient)

* Predictive Learning (PL) Loss
* the residual r should encode the semantic shift caused by the augmentation

* thus, we utilize r to predict the corresponding augmentations of x’, denoted as t

Lpr(x',x,t;0) = CE(Hg(r),t%) + | Hg(r) — t°5

A non-conflicting combination of multi-view methods and predictive methods




Pretext-aware Residual Relaxation (Prelax)

* Prelax (ours)
* Residual Relaxed Similarity loss (« is the interpolating coefficient)

* Predictive Learning (PL) Loss

* Constraint on the Similarity
* the residual is unbounded, and the distance between views could be very large
* enforce small distance by adding a constraint

Lsm = ||Go(Fo(x')) — ]-'(/,(x)”; <e



Pretext-aware Residual Relaxation (Prelax)

* Prelax (ours)
* Residual Relaxed Similarity loss (« is the interpolating coefficient)

Lias (X', %;0) = [|Go (Fo(x')) — aGe(r) — Fo (x)]|5-
* Predictive Learning (PL) Loss
Lo, (¥, %, t;0) = CE(Hg(r), t) + | Ho(r) — t°|I3
* Constraint on the Similarity
Laim = [|Go(Fo(x')) = Fo(x)|l; < €



Pretext-aware Residual Relaxation (Prelax)

* Prelax (ours)
* Residual Relaxed Similarity loss (« is the interpolating coefficient)

Ros (X', %;0) = [|Go (Fo(x)) — aGa(r) — Fg(x)||3-
* Predictive Learning (PL) Loss
Loy (x', %, t;0) = CE(Hg(r), t7) + || Ho(r) — t°II;
* Constraint on the Similarity

Laim = [|Go(Fo (x')) ~ Fo(x0) |, <

e Combined

, 5 . r . Penalized
Tgn LRas (X5 0) FYLPLOC X 0)s ™ £ (%, %56) + VLo (X, X 8) + BLaim (X', X 6),

st. [|Go (Fo(x')) — F(x)|lz <e.
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* Theoretical results
* Prelax provably enjoys better downstream performance
* An information-theoretical characterization
e Xinput, T downstream task, S self-supervised signal, Z representation
* S,: multi-view learning, S,: predictive learning
* Goal: maximize mutual information I(Z;T) with downstream task



Pretext-aware Residual Relaxation (Prelax)

* Theoretical results
* Prelax provably enjoys better downstream performance

* An information-theoretical characterization
e Xinput, T downstream task, S self-supervised signal, Z representation
* S,: multi-view learning, S,: predictive learning
* Goal: maximize mutual information I(Z;T) with downstream task

* Prelax extracts more task-relevant information than multi-view (Z,y) and
predictive (Zpy) methods

Theorem 1. Assume that by maximizing the mutual information, each method can retain all infor-
mation in X about the learning signal S (or T), i.e., I(X;S) = maxz I(Z;S). Then we have the
following inequalities on their task-relevant information 1(Z;'T):

I(X;T) = I(Zsup; T) > I(Zpretax; T) > max(I(Zny; T), I(Zpr; T)). (10)



Pretext-aware Residual Relaxation (Prelax)

* Theoretical results
* Prelax provably enjoys better downstream performance

* An information-theoretical characterization
e Xinput, T downstream task, S self-supervised signal, Z representation
* S,: multi-view learning, S,: predictive learning
* Goal: maximize mutual information I(Z;T) with downstream task

* Prelax extracts more task-relevant information than multi-view (Z,y) and
predictive (Zpy) methods

As a result, Prelax has a tighter upper bound on the downstream Bayes error

Theorem 2. Further assume that T is a K-class categorical variable. In general, we have the
upper bound u® on the downstream Bayes errors P¢ := E, [1 — maxier P (T = t|z)],

P¢ <uf:=log2+ PS_ -logK + I(X;T|S). (11)

sup

where P¢ = Th(P¢) = min{max{P¢,0},1 — 1/K} denotes the thresholded Bayes error. Accord-
ingly, we have the following inequalities on the upper bounds for different unsupervised methods,

u:up S uleDrelax S min(u?nwule)L) S max(urenwule)L)' (12)



Practical Implementations of Prelax

* Backbone (e.g. SimSiam) between two augmented views X4, X,

ESimsiam (X; 9) = ng(FO(xl)) - F¢(X2)”§ + Hga(Fe(Xz)) - ]:d’(xl)“g



Practical Implementations of Prelax

* Backbone (e.g. SimSiam) between two augmented views X4, X,

ESimsiam (X; 9) = ng(FO(xl)) - F¢(X2)”§ + Hga(Fe(Xz)) - ]:d’(xl)“g

* Prelax-std: generalize baselines with existing augmentations

e Residual
ri9 = Fo(x1) — Fo(x2)

* Prelax-std objective

Lprelax—std(X;0) = LRos(X1,X2;0) + vLpL(X1,X2,t1;0) + BLsiIm (X2,X1;0).



Practical Implementations of Prelax

* Backbone (e.g. SimSiam) between two augmented views X4, X,

£Simsiam (X; 0) = ||ge(fe(X1)) - F¢(X2)”§ + l|g9(F0(X2)) - ]:d’(xl)“g

* Prelax-std: generalize baselines under existing augmentations

* Prelax-rot: incorporating stronger augmentation (rotation)
* a third view X3 as a randomly rotated x1, residual (for rotation) r3; = z3 — 21
* Rotation Residual Relaxation Similarity (R3S) loss

L335(x1:3;0) = ||Go(Fo(x3)) — aGo(rs1) — Fe(x2)|5-
* Combined

Lprelax—rot (X;0) = LRas(X1:3;0) + YLBL (X1, X3, a5 0) + BLsim (X2,%1; ).



Practical Implementations of Prelax

* Backbone (e.g. SimSiam) between two augmented views X4, X,

* Pre
* Pre
* Pre

Lsimsiam (%;0) = [|Go(Fo(x1)) — Fo(x2)ll; + [1Gs(Fo(x2)) — Fo(x1) I3

ax-std: generalize baselines under existing augmentations
ax-rot: incorporating stronger augmentation (rotation)
ax-all: best of both worlds

1 (8 (6 %)
CPrelax—au(X; 9) 25 (LRlzs(xlax2§ 9) I ERgs(XI:B; 9)) i %LPL(Xlax%tl; 9)

+ j;_z‘clf"o[t;(xla X3, a, 0) + IBLSim(X27 X1; 0)7




Experiments

 Two backbone methods: SimSiam and BYOL

* Two benchmark datasets: CIFAR-10 and ImageNette (10 classes from

ImageNet)

* Default hyperparameters + ResNet-18

Table 1: Linear evaluation on CIFAR-10 (a) and ImageNette (b) with ResNet-18 backbone. TTA:

Test-Time Augmentation.

(a) CIFAR-10.
Method Acc. (%)
Supervised [12] (re-produced) 95.0
Rotation [9] (re-produced) 88.3
BYOL [10] (re-produced) 91.1
SimCLR [2] 91.1
SimSiam [5] 91.8
SimSiam + Prelax 93.4

(b) ImageNette.
Method Acc. (%)
Supervised 91.0
Supervised + TTA 92.2
BYOL [10] (ResNet-18) 91.9
BYOL [10] (ResNet-50) 92.3
BYOL + Prelax (ResNet-18) 92.6




Experiments

e Effectiveness of Prelax-variants
e Three benchmark datasets

* In-domain linear evaluation

e OQut-of-domain linear evaluation

Residual Relaxation can benefit
from both existing (Prelax-std)
and stronger (Prelax-rot) augs

(a) In-domain linear evaluation.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet-200
SimSiam [5] 91.8 66.9 47.7
SimSiam + Prelax-std 92.5 67.5 47.9
SimSiam + Prelax-rot 924 67.3 47.1
SimSiam + Prelax-all 934 70.0 49.2

(b) Out-of-domain linear evaluation.

Method C100 - C10 Tiny200 — C10 Tiny200 — C100
SimSiam [5] 44.1 43.9 21.8
SimSiam + Prelax-std 45.0 45.1 21.8
SimSiam + Prelax-rot 45.0 45.1 22.0
SimSiam + Prelax-all 449 44.6 22.1




Experiments

* Empirical understandings

(a) Representation visualization. (b) Nearest image retrieval.



Experiments

e Ablation Study

* best among alternative algorithmic options
* each component is necessary in Prelax

(b) Ablation study.
(a) Comparison against alternative options.
Method Acc. (%)
Method Acc. (%) .

— Prelax-std (R2S + Sim + PL) 92.5
SimSiam [5] 9L.8 Prelax-std w/o R2S 92.2
SimSiam + margin loss 91.9 Prelax-std w/o Sim 91.7
Rotation [9] 38 3 Prelax-std w/o PL 91.5
SimSiam + rotation aug. 87.9 Prelax-rot (R3S + Sim + RotPL)  92.4
SimSiam + Rotation loss 91.7 Prelax-rot w/o R3S 91.1
SimSiam + Prelax (ours) 93.4 Prelax-rot w/o Sim 79.8

Prelax-rot w/o RotPL 91.9




Takeaways

e Stronger augmentations like rotation are harmful for multi-view
learning, but they contain useful semantics

e Residuals can be used to account for large semantic shift

* Residual relaxation generalizes multi-view learning to benefit from
stronger augmentations

* Multi-view learning and self-supervised learning can be combined to
encode richer semantics and yield better performance



Thanks!

Q&A

exact alignment residual alignment

(b) A toy example of residual relaxation.

Find more stuff about this work at https://yifeiwang77.github.io/

Contact:
yifei_wang AT pku.edu.cn; yisen.wang AT pku.edu.cn
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