

Residual Relaxation for Multi-view Representation Learning

Yifei Wang, Zhengyang Geng, Feng Jiang, CM Li, Yisen Wang, Jiansheng Yang, Zhouchen Lin

Peking University

Motivation

- Multi-view methods become dominant for unsupervised learning
 - SimCLR, MoCo, BYOL, SimSiam, etc
 - For each input x, we get two views, x1, x2 by random augmentation
 - Learn to align augmented views x1, x2 by minimizing representation distances

- Multi-view methods become dominant for unsupervised learning
 - SimCLR, MoCo, BYOL, SimSiam, etc
 - For each input x, we get two views, x1, x2 by random augmentation
 - Learn to align augmented views x1, x2 by minimizing representation distances
- Observation
 - Pretext (e.g. image augmentation) has a large effect on the final performance

- Multi-view methods become dominant for unsupervised learning
 - SimCLR, MoCo, BYOL, SimSiam, etc
 - For each input x, we get two views, x1, x2 by random augmentation
 - Learn to align augmented views x1, x2 by minimizing representation distances
- Observation
 - Pretext (e.g. image augmentation) has a large effect on the final performance
 - Some augmentations, like rotation, are too strong to be aligned exactly

Method	Acc (%)
SimSiam [5] SimSiam + margin loss	91.8 91.9
Rotation [9] SimSiam + rotation aug. SimSiam + Rotation loss	88.3 87.9 91.7

Motivation

- Multi-view methods become dominant for unsupervised learning
 - SimCLR, MoCo, BYOL, SimSiam, etc
 - For each input x, we get two views, x1, x2 by random augmentation
 - Learn to align augmented views x1, x2 by minimizing representation distances

Observation

- Pretext (e.g. image augmentation) has a large effect on the final performance
- Some augmentations, like rotation, are too strong to be aligned exactly
- However, rotation is known as an effective signal for Self-supervised Learning

Method	Acc (%)
SimSiam [5]	91.8
SimSiam + margin loss	91.9
Rotation [9]	88.3
SimSiam + rotation aug.	87.9
SimSiam + Rotation loss	91.7

Multi-view methods become dominant for unsupervised learning

How to cultivate stronger augmentations (like rotation) to design better multi-view methods?

- Learn to align augmented views x1, x2 by minimizing representation distances
- Observation
 - Pretext (e.g. image augmentation) has a large effect on the final performance
 - Some augmentations, like rotation, are too strong to be aligned exactly
 - However, rotation is known as an effective signal for Self-supervised Learning

Method	Acc (%)
SimSiam [5] SimSiam + margin loss	91.8 91.9
Rotation [9] SimSiam + rotation aug. SimSiam + Rotation loss	88.3 87.9 91.7

- Direct combination of multi-view and pretext-predictive objectives
 - Pretext-invariance and Pretext-awareness
 - Two goals are contradictory to each other

Method	Acc (%)
SimSiam [5]	91.8
SimSiam + margin loss	91.9
Rotation [9]	88.3
SimSiam + rotation aug.	87.9
SimSiam + Rotation loss	91.7

- Direct combination of pretext-invariant and pretext-aware objectives
 - Pretext-awareness and Pretext-invariance
 - Two goals are contradictory to each other
- Use a margin loss to relax the alignment

$$\mathcal{L}_{ ext{margin}}ig(\mathbf{x}',\mathbf{x};oldsymbol{ heta}ig) = ext{max}\Big(ig\|\mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}'ig)ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})ig\|_2^2 - \eta, 0\Big)$$

- the representation space keeps shifting
- difficult to choose a universal tolerance

·	
Method	Acc (%)
SimSiam [5] SimSiam + margin loss	91.8 91.9
Rotation [9] SimSiam + rotation aug. SimSiam + Rotation loss	88.3 87.9 91.7

Direct combination of pretext-invariant

Find an adaptive relaxation for each input!

Use a margin loss to relax the alignment

$$\mathcal{L}_{ ext{margin}}ig(\mathbf{x}',\mathbf{x};oldsymbol{ heta}ig) = ext{max} \Big(ig\|\mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}'ig)ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})ig\|_2^2 - \eta, 0\Big)$$
 -

- the representation space keeps shifting
- difficult to choose a universal tolerance

Method	Acc (%)
SimSiam [5]	91.8
SimSiam + margin loss	91.9
Rotation [9]	88.3
SimSiam + rotation aug.	87.9
SimSiam + Rotation loss	91.7

Our Solution: Residual Relaxation

- Use residuals to account for the semantic shift brought by augmentations
- Exact alignment fails for strong augmentation

Identity alignment always holds instead

$$\mathbf{z}' \rightarrow \leftarrow \mathbf{z} + \mathbf{r}$$

• where $\mathbf{r} = \mathbf{z}' - \mathbf{z}$ encodes the semantic shift

(b) A toy example of residual relaxation.

Baseline: similarity loss for x'=t(x)

$$\mathcal{L}_{ ext{sim}}ig(\mathbf{x}',\mathbf{x};oldsymbol{ heta}ig) = ig\|\mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}'ig)ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})ig\|_2^2$$

• F_{θ} online network, F_{ϕ} target network, G_{θ} online prediction network

Baseline: similarity loss

$$\mathcal{L}_{ ext{sim}}ig(\mathbf{x}',\mathbf{x};oldsymbol{ heta}ig) = ig\|\mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}'ig)ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})ig\|_2^2$$

- F_{θ} online network, F_{ϕ} target network, G_{θ} online prediction network
- Prelax (ours)
 - Exact Alignment -> Identity Alignment

$$\mathbf{r} riangleq \mathbf{z}_{m{ heta}}' - \mathbf{z}_{m{ heta}} = \mathcal{F}_{m{ heta}}ig(\mathbf{x}'ig) - \mathcal{F}_{m{ heta}}(\mathbf{x})$$

$$\mathcal{G}_{m{ heta}}ig(\mathbf{z}_{m{ heta}}'ig)
ightarrow \leftarrow \mathbf{z}_{\phi} \quad \Rightarrow \quad \mathcal{G}_{m{ heta}}ig(\mathbf{z}_{m{ heta}}'ig) - \mathcal{G}_{m{ heta}}(\mathbf{r})
ightarrow \leftarrow \mathbf{z}_{\phi}$$

• Residual Relaxed Similarity (R2S) loss (α is the interpolating coefficient)

$$\mathcal{L}_{R2S}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) = \|\mathcal{G}_{\boldsymbol{\theta}}\left(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}')\right) - \alpha \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{r}) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x})\|_{2}^{2}.$$

- Prelax (ours)
 - Residual Relaxed Similarity loss (α is the interpolating coefficient)

$$\mathcal{L}_{R2S}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) = \|\mathcal{G}_{\boldsymbol{\theta}}\left(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}')\right) - \alpha \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{r}) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x})\|_{2}^{2}.$$

- Predictive Learning (PL) Loss
 - the residual **r** should encode the semantic shift caused by the augmentation
 - thus, we utilize **r** to predict the corresponding augmentations of x', denoted as **t**

$$\mathcal{L}_{ ext{PL}}ig(\mathbf{x}',\mathbf{x},\mathbf{t};oldsymbol{ heta}ig) = ext{CE}ig(\mathcal{H}^d_{oldsymbol{ heta}}(\mathbf{r}),\mathbf{t}^dig) + \|\mathcal{H}^c_{oldsymbol{ heta}}(\mathbf{r}) - \mathbf{t}^c\|_2^2$$

A non-conflicting combination of multi-view methods and predictive methods

- Prelax (ours)
 - Residual Relaxed Similarity loss (α is the interpolating coefficient)

$$\mathcal{L}_{R2S}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) = \|\mathcal{G}_{\boldsymbol{\theta}}\left(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}')\right) - \alpha \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{r}) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x})\|_{2}^{2}.$$

Predictive Learning (PL) Loss

$$\mathcal{L}_{ ext{PL}}ig(\mathbf{x}',\mathbf{x},\mathbf{t};oldsymbol{ heta}ig) = ext{CE}ig(\mathcal{H}^d_{oldsymbol{ heta}}(\mathbf{r}),\mathbf{t}^dig) + \|\mathcal{H}^c_{oldsymbol{ heta}}(\mathbf{r}) - \mathbf{t}^c\|_2^2$$

- Constraint on the Similarity
 - the residual is unbounded, and the distance between views could be very large
 - enforce small distance by adding a constraint

$$\mathcal{L}_{ ext{sim}} = \left\| \mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}'ig)ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})
ight\|_2^2 \leq arepsilon$$

- Prelax (ours)
 - Residual Relaxed Similarity loss (α is the interpolating coefficient)

$$\mathcal{L}_{R2S}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) = \|\mathcal{G}_{\boldsymbol{\theta}}\left(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}')\right) - \alpha \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{r}) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x})\|_{2}^{2}.$$

Predictive Learning (PL) Loss

$$\mathcal{L}_{ ext{PL}}ig(\mathbf{x}',\mathbf{x},\mathbf{t};oldsymbol{ heta}ig) = ext{CE}ig(\mathcal{H}^d_{oldsymbol{ heta}}(\mathbf{r}),\mathbf{t}^dig) + \|\mathcal{H}^c_{oldsymbol{ heta}}(\mathbf{r}) - \mathbf{t}^c\|_2^2$$

Constraint on the Similarity

$$\mathcal{L}_{ ext{sim}} = \left\| \mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}' ig) ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})
ight\|_2^2 \leq arepsilon$$

- Prelax (ours)
 - Residual Relaxed Similarity loss (α is the interpolating coefficient)

$$\mathcal{L}_{R2S}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) = \|\mathcal{G}_{\boldsymbol{\theta}}\left(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}')\right) - \alpha \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{r}) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x})\|_{2}^{2}.$$

Predictive Learning (PL) Loss

$$\mathcal{L}_{ ext{PL}}ig(\mathbf{x}',\mathbf{x},\mathbf{t};oldsymbol{ heta}ig) = ext{CE}ig(\mathcal{H}^d_{oldsymbol{ heta}}(\mathbf{r}),\mathbf{t}^dig) + \|\mathcal{H}^c_{oldsymbol{ heta}}(\mathbf{r}) - \mathbf{t}^c\|_2^2$$

Constraint on the Similarity

$$\mathcal{L}_{ ext{sim}} = \left\|\mathcal{G}_{oldsymbol{ heta}}ig(\mathcal{F}_{oldsymbol{ heta}}ig(\mathbf{x}'ig)ig) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x})
ight\|_2^2 \leq arepsilon$$

Combined

$$\min_{\boldsymbol{\theta}} \ \mathcal{L}_{\mathrm{R2S}}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) + \gamma \mathcal{L}_{\mathrm{PL}}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}), \quad \Longrightarrow \quad \mathcal{L}_{\mathrm{R2S}}^{\alpha}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) + \gamma \mathcal{L}_{\mathrm{PL}}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}) + \beta \mathcal{L}_{\mathrm{sim}}(\mathbf{x}', \mathbf{x}; \boldsymbol{\theta}), \\ s.t. \quad \|\mathcal{G}_{\boldsymbol{\theta}} \left(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}')\right) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x})\|_{2}^{2} \leq \varepsilon.$$

- Theoretical results
 - Prelax provably enjoys better downstream performance
 - An information-theoretical characterization
 - X input, T downstream task, S self-supervised signal, Z representation
 - S_v : multi-view learning, S_a : predictive learning
 - Goal: maximize mutual information I(**Z**;**T**) with downstream task

- Theoretical results
 - Prelax provably enjoys better downstream performance
 - An information-theoretical characterization
 - X input, T downstream task, S self-supervised signal, Z representation
 - S_v : multi-view learning, S_a : predictive learning
 - Goal: maximize mutual information I(**Z;T**) with downstream task
 - Prelax extracts more task-relevant information than multi-view ($\mathbf{Z_{mv}}$) and predictive ($\mathbf{Z_{PL}}$) methods

Theorem 1. Assume that by maximizing the mutual information, each method can retain all information in \mathbf{X} about the learning signal \mathbf{S} (or \mathbf{T}), i.e., $I(\mathbf{X};\mathbf{S}) = \max_{\mathbf{Z}} I(\mathbf{Z};\mathbf{S})$. Then we have the following inequalities on their task-relevant information $I(\mathbf{Z};\mathbf{T})$:

$$I(\mathbf{X}; \mathbf{T}) = I(\mathbf{Z}_{\text{sup}}; \mathbf{T}) \ge I(\mathbf{Z}_{\text{Prelax}}; \mathbf{T}) \ge \max(I(\mathbf{Z}_{\text{mv}}; \mathbf{T}), I(\mathbf{Z}_{\text{PL}}; \mathbf{T})).$$
 (10)

- Theoretical results
 - Prelax provably enjoys better downstream performance
 - An information-theoretical characterization
 - X input, T downstream task, S self-supervised signal, Z representation
 - S_v : multi-view learning, S_a : predictive learning
 - Goal: maximize mutual information I(**Z;T**) with downstream task
 - Prelax extracts more task-relevant information than multi-view ($\mathbf{Z_{mv}}$) and predictive ($\mathbf{Z_{PL}}$) methods
 - As a result, Prelax has a tighter upper bound on the downstream Bayes error

Theorem 2. Further assume that \mathbf{T} is a K-class categorical variable. In general, we have the upper bound u^e on the downstream Bayes errors $P^e := \mathbb{E}_{\mathbf{z}} \left[1 - \max_{\mathbf{t} \in \mathbf{T}} P\left(\mathbf{T} = \mathbf{t} | \mathbf{z}\right) \right]$,

$$\bar{P}^e \le u^e := \log 2 + P_{\sup}^e \cdot \log K + I(\mathbf{X}; \mathbf{T}|\mathbf{S}). \tag{11}$$

where $\bar{P}^e = \text{Th}(P^e) = \min\{\max\{P^e, 0\}, 1 - 1/K\}$ denotes the thresholded Bayes error. Accordingly, we have the following inequalities on the upper bounds for different unsupervised methods,

$$u_{\text{sup}}^e \le u_{\text{Prelax}}^e \le \min(u_{\text{mv}}^e, u_{\text{PL}}^e) \le \max(u_{\text{mv}}^e, u_{\text{PL}}^e). \tag{12}$$

Practical Implementations of Prelax

• Backbone (e.g. SimSiam) between two augmented views $\mathbf{x}_1, \mathbf{x}_2$

$$\mathcal{L}_{ ext{Simsiam}}\left(\mathbf{x};oldsymbol{ heta}
ight) = \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_1)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_2)
ight)
ight\|_2^2 + \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_2)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_1)
ight)
ight\|_2^2$$

• Backbone (e.g. SimSiam) between two augmented views \mathbf{x}_1 , \mathbf{x}_2

$$\mathcal{L}_{ ext{Simsiam}}\left(\mathbf{x};oldsymbol{ heta}
ight) = \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_1)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_2)
ight)
ight\|_2^2 + \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_2)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_1)
ight)
ight\|_2^2$$

- Prelax-std: generalize baselines with existing augmentations
 - Residual

$$\mathbf{r}_{12} = \mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_1) - \mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_2)$$

Prelax-std objective

$$\mathcal{L}_{\text{Prelax-std}}(\mathbf{x}; \boldsymbol{\theta}) = \mathcal{L}_{\text{R2S}}^{\alpha}(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}) + \gamma \mathcal{L}_{\text{PL}}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{t}_1; \boldsymbol{\theta}) + \beta \mathcal{L}_{\text{sim}}(\mathbf{x}_2, \mathbf{x}_1; \boldsymbol{\theta}).$$

Practical Implementations of Prelax

• Backbone (e.g. SimSiam) between two augmented views \mathbf{x}_1 , \mathbf{x}_2

$$\mathcal{L}_{ ext{Simsiam}}\left(\mathbf{x};oldsymbol{ heta}
ight) = \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_1)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_2)
ight)
ight\|_2^2 + \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_2)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_1)
ight)
ight\|_2^2$$

- Prelax-std: generalize baselines under existing augmentations
- Prelax-rot: incorporating stronger augmentation (rotation)
 - a third view \mathbf{x}_3 as a randomly rotated \mathbf{x}_1 , residual (for rotation) $\mathbf{r}_{31} = \mathbf{z}_3 \mathbf{z}_1$
 - Rotation Residual Relaxation Similarity (R3S) loss

$$\mathcal{L}_{\text{R3S}}^{\alpha}(\mathbf{x}_{1:3};\boldsymbol{\theta}) = \|\mathcal{G}_{\boldsymbol{\theta}}(\mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x}_3)) - \alpha \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{r}_{31}) - \mathcal{F}_{\boldsymbol{\phi}}(\mathbf{x}_2)\|_2^2.$$

Combined

$$\mathcal{L}_{\text{Prelax-rot}}(\mathbf{x}; \boldsymbol{\theta}) = \mathcal{L}_{\text{R3S}}^{\alpha}(\mathbf{x}_{1:3}; \boldsymbol{\theta}) + \gamma \mathcal{L}_{\text{PL}}^{\text{rot}}(\mathbf{x}_{1}, \mathbf{x}_{3}, a; \boldsymbol{\theta}) + \beta \mathcal{L}_{\text{sim}}(\mathbf{x}_{2}, \mathbf{x}_{1}; \boldsymbol{\theta}).$$

• Backbone (e.g. SimSiam) between two augmented views \mathbf{x}_1 , \mathbf{x}_2

$$\mathcal{L}_{ ext{Simsiam}}\left(\mathbf{x};oldsymbol{ heta}
ight) = \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_1)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_2)
ight)
ight\|_2^2 + \left\|\mathcal{G}_{oldsymbol{ heta}}(\mathcal{F}_{oldsymbol{ heta}}(\mathbf{x}_2)) - \mathcal{F}_{oldsymbol{\phi}}(\mathbf{x}_1)
ight)
ight\|_2^2$$

- Prelax-std: generalize baselines under existing augmentations
- Prelax-rot: incorporating stronger augmentation (rotation)
- Prelax-all: best of both worlds

$$\mathcal{L}_{\text{Prelax-all}}(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{2} \left(\mathcal{L}_{\text{R2S}}^{\alpha_1}(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}) + \mathcal{L}_{\text{R3S}}^{\alpha_2}(\mathbf{x}_{1:3}; \boldsymbol{\theta}) \right) + \frac{\gamma_1}{2} \mathcal{L}_{\text{PL}}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{t}_1; \boldsymbol{\theta}) + \frac{\gamma_2}{2} \mathcal{L}_{\text{PL}}^{\text{rot}}(\mathbf{x}_1, \mathbf{x}_3, a; \boldsymbol{\theta}) + \beta \mathcal{L}_{\text{sim}}(\mathbf{x}_2, \mathbf{x}_1; \boldsymbol{\theta}),$$

- Two backbone methods: SimSiam and BYOL
- Two benchmark datasets: CIFAR-10 and ImageNette (10 classes from ImageNet)
- Default hyperparameters + ResNet-18

Table 1: Linear evaluation on CIFAR-10 (a) and ImageNette (b) with ResNet-18 backbone. TTA: Test-Time Augmentation.

(a) CIFAR-10.

Method	Acc. (%)
Supervised [12] (re-produced)	95.0
Rotation [9] (re-produced) BYOL [10] (re-produced) SimCLR [2] SimSiam [5]	88.3 91.1 91.1 91.8
SimSiam + Prelax	93.4

(b) ImageNette.

Method	Acc. (%)
Supervised Supervised + TTA	91.0 92.2
BYOL [10] (ResNet-18) BYOL [10] (ResNet-50)	91.9 92.3
BYOL + Prelax (ResNet-18)	92.6

- Effectiveness of Prelax-variants
 - Three benchmark datasets
 - In-domain linear evaluation
 - Out-of-domain linear evaluation
- Residual Relaxation can benefit from both existing (Prelax-std) and stronger (Prelax-rot) augs

(a) In-domain linear evaluation.

Method	CIFAR-10	CIFAR-100	Tiny-ImageNet-200
SimSiam [5]	91.8	66.9	47.7
SimSiam + Prelax-std SimSiam + Prelax-rot SimSiam + Prelax-all	92.5 92.4 93.4	67.5 67.3 70.0	47.9 47.1 49.2

(b) Out-of-domain linear evaluation.

Method	$C100 \rightarrow C10$	$Tiny200 \rightarrow C10$	$Tiny200 \rightarrow C100$
SimSiam [5]	44.1	43.9	21.8
SimSiam + Prelax-std SimSiam + Prelax-rot SimSiam + Prelax-all	45.0 45.0 44.9	45.1 45.1 44.6	21.8 22.0 22.1

Experiments

• Empirical understandings

(a) Representation visualization.

(b) Nearest image retrieval.

Ablation Study

- best among alternative algorithmic options
- each component is necessary in Prelax

(a) Comparison against alternative options.

Method	Acc. (%)
SimSiam [5] SimSiam + margin loss	91.8 91.9
Rotation [9] SimSiam + rotation aug. SimSiam + Rotation loss	88.3 87.9 91.7
SimSiam + Prelax (ours)	93.4

(b) Ablation study.

Method	Acc. (%)
Prelax-std (R2S + Sim + PL)	92.5
Prelax-std w/o R2S	92.2
Prelax-std w/o Sim	91.7
Prelax-std w/o PL	91.5
Prelax-rot (R3S + Sim + RotPL)	92.4
Prelax-rot w/o R3S	91.1
Prelax-rot w/o Sim	79.8
Prelax-rot w/o RotPL	91.9

- Stronger augmentations like rotation are harmful for multi-view learning, but they contain useful semantics
- Residuals can be used to account for large semantic shift
- Residual relaxation generalizes multi-view learning to benefit from stronger augmentations
- Multi-view learning and self-supervised learning can be combined to encode richer semantics and yield better performance

Thanks!

exact alignment residual alignment

(b) A toy example of residual relaxation.

Q&A

Find more stuff about this work at https://yifeiwang77.github.io/
Contact:

yifei_wang AT pku.edu.cn; yisen.wang AT pku.edu.cn