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Background

• Linear GCNs achieve comparable performance to nonlinear ones
• SGC (Simple Graph Convolution)
• Given input X, label Y, adjacency matrix A, SGC predicts with

• 1) K propagation steps (core)

• 2) linear classification

• advantages: memory and parameter efficiency (preprocessed features)
• disadvantages: over-smoothing, inferior performance

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and 
Kilian Q Weinberger. Simplifying graph convolutional networks. In ICML, 2019. 



Equivalence between SGC and Graph Heat 
Equation
• Key Insight from a continuous perspective
• SGC’s propagation = a (coarse) discretization of the graph diffusion equation

• Graph Heat Equation (GHE)

• where 𝐋 = 𝐈 − 𝐒 is the graph Laplacian
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• SGC’s propagation = a (coarse) discretization of the graph diffusion equation

• Graph Heat Equation (GHE)

• where 𝐋 = 𝐈 − 𝐒 is the graph Laplacian

• Discretization
• Applying the forward Euler method with time interval Δ𝑡

• Thus, SGC is the Euler discretization of GHE with step size Δ𝑡 = 1

SGC propagation:

Euler:



Revealing SGC’s Fundamental Limitations

• Limitations
• 1. Oversmoothing (asymptotic)

• SGC will oversmooth with increasing propagation steps 𝐾 = 𝑇 → ∞
• We provide a continuous characterization of this phenomenon



Revealing SGC’s Fundamental Limitations

• Limitations
• 1. Oversmoothing (asymptotic)
• 2. Numerical Error

• Consequence by adopting a fixed time interval Δ𝑡 = 1

• As T=K, the upper bound reduces to
• The numerical error increases exponentially with more propagation steps K=T
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To minimize the risk, we need
1) the optimal terminal time
2) minimized numerical errors
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Revealing SGC’s Fundamental Limitations

• Limitations
• 1. Oversmoothing (asymptotic)
• 2. Numerical Error
• 3. Learning Risks

• The two above issues will finally lead to a large learning risk

To minimize the risk, we need
1) the optimal terminal time
2) minimized numerical errors

Ideal: 𝚫𝒕 → 𝟎
SGC: fixed step size Δ𝑡 = 1



A Simple Fix to All These Limitations!

Decoupling T (terminal time) and K (propagation steps)

• We take K and T as two free parameters
• 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
• 2. Given a fixed optimal T*, we can increase K for better precision without oversmoothing
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A Simple Fix to All These Limitations!

Decoupling T (terminal time) and K (propagation steps)

• We take K and T as two free parameters
• 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
• 2. Given a fixed optimal T*, we can increase K for better precision without oversmoothing

• Decoupled Graph Convolution (DGC)

• where ode_int(X, Δt, K) denotes the numerical intergration with step size Δt for K steps

• DGC-Euler with forward Euler scheme and step size Δt = T/K
• DGC-RK with the 4th-order Runge-Kutta (RK) method



Verifying the Benefits of DGC 

• Theoretical Benefits
• Comparing SGC to DGC

Aspects SGC (Wu et al. 2019) DGC-Euler (ours)

Asymptotic Over-smoothing as T=K A fixed T with optimal tradeoff

Numerical error Exponentially large when K
increases

With fixed T, increasing K leads
to smaller numerical error

Learning Risk Deviation from optimal T +
Large numerical error

Reach optimal real-valued T +
minimized numerical error with
large K



Verifying the Benefits of DGC 

• Theoretical Benefits
• Empirical Evidence

T: Either a smaller T or a 
larger T mixes the features 
up. An optimal T implies
better separable features.

K: With fixed optimal T , 
too large step size ∆t 
(small K) leads to feature 
collapse, and large K
makes features separable!
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• Performance on Semi-supervised Node Classification 
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• Performance on Semi-supervised Node Classification 

Improves SGC by a large margin

Comparable to SOTA nonlinear GCNs!
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Experiments

• Performance on Semi-supervised Node Classification 
• Performance on Fully-supervised Node Classification 
• Performance on Large Scale Datasets 



Experiments

• Empirical Understandings of DGC
• Left: over-smoothing with increasing steps
• Middle: robustness to feature noise 
• Right: computation time



Experiments

• Empirical Understandings of DGC
• Left: graph Laplacian 
• Middle: numerical scheme
• Right: terminal time



Takeaways

• The diffusion process can be understood through continuous PDEs
• This perspective inspires us to design more accurate and robust

(linear) GCNs by simply decoupling T and K
• A properly designed linear GCN is comparable to SOTA nonlinear ones
• We should propose new alternatives that can truly benefit from

nonlinear architectures
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