

Dissecting the Diffusion Process in Linear Graph Convolutional Networks

Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin (Peking University)

NeurIPS 2021

Background

- Linear GCNs achieve comparable performance to nonlinear ones
- SGC (Simple Graph Convolution)
 - Given input X, label Y, adjacency matrix A, SGC predicts with

$$\hat{\mathbf{Y}}_{ ext{SGC}} = ext{softmax}ig(\mathbf{S}^K \mathbf{X} m{\Theta}ig)$$

• 1) K propagation steps (core)

$$\mathbf{X}^{(k)} \leftarrow \mathbf{S} \mathbf{X}^{(k-1)}, ext{ where } \mathbf{S} = \widetilde{\mathbf{D}}^{-rac{1}{2}} \widetilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-rac{1}{2}} \implies \mathbf{X}^{(K)} = \mathbf{S}^K \mathbf{X}$$

• 2) linear classification

$$\hat{\mathbf{Y}}_{ ext{SGC}} = ext{softmax} \Big(\mathbf{X}^{(K)} \mathbf{\Theta} \Big)$$

- advantages: memory and parameter efficiency (preprocessed features)
- disadvantages: over-smoothing, inferior performance

Equivalence between SGC and Graph Heat Equation

- Key Insight from a continuous perspective
 - SGC's propagation = a (coarse) **discretization** of the graph diffusion equation
- Graph Heat Equation (GHE)

$$egin{cases} rac{d\mathbf{X}_t}{dt} &= -\mathbf{L}\mathbf{X}_t\ \mathbf{X}_0 &= \mathbf{X} \end{cases}$$

• where $\mathbf{L} = \mathbf{I} - \mathbf{S}$ is the graph Laplacian

Equivalence between SGC and Graph Heat Equation

- Key Insight from a continuous perspective
 - SGC's propagation = a (coarse) **discretization** of the graph diffusion equation
- Graph Heat Equation (GHE)

$$egin{cases} rac{d\mathbf{X}_t}{dt} &= -\mathbf{L}\mathbf{X}_t\ \mathbf{X}_0 &= \mathbf{X} \end{cases}$$

- where $\mathbf{L} = \mathbf{I} \mathbf{S}$ is the graph Laplacian
- Discretization
 - Applying the forward Euler method with time interval Δt

Euler: $\hat{\mathbf{X}}_{t+\Delta t} = \hat{\mathbf{X}}_t - \Delta t \mathbf{L} \hat{\mathbf{X}}_t = \hat{\mathbf{X}}_t - \Delta t (\mathbf{I} - \mathbf{S}) \hat{\mathbf{X}}_t = [(1 - \Delta t)\mathbf{I} + \Delta t \mathbf{S}] \hat{\mathbf{X}}_t$

SGC propagation: $\mathbf{X}^{(k)} \leftarrow \mathbf{S}\mathbf{X}^{(k-1)}$

• Thus, SGC is the Euler discretization of GHE with step size $\Delta t = 1$

• Limitations

- 1. Oversmoothing (asymptotic)
 - SGC will oversmooth with increasing propagation steps $K = T \rightarrow \infty$
 - We provide a continuous characterization of this phenomenon

Theorem 1 (Oversmoothing from a spectral view). Assume that the eigendecomposition of the Laplacian matrix as $\mathbf{L} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$, with eigenvalues λ_i and eigenvectors \mathbf{u}_i . Then, the heat equation (Eq. (4)) admits a closed-form solution at time t, known as the heat kernel $\mathbf{H}_t = e^{-t\mathbf{L}} = \sum_{i=1}^{n} e^{-\lambda_i t} \mathbf{u}_i \mathbf{u}_i^{\top}$. As $t \to \infty$, \mathbf{H}_t asymptotically converges to a non-informative equilibrium as $t \to \infty$, due to the non-trivial (i.e., positive) eigenvalues vanishing:

$$\lim_{t \to \infty} e^{-\lambda_i t} = \begin{cases} 0, & \text{if } \lambda_i > 0\\ 1, & \text{if } \lambda_i = 0 \end{cases}, \ i = 1, \dots, n.$$

$$(7)$$

Limitations

- 1. Oversmoothing (asymptotic)
- 2. Numerical Error
 - Consequence by adopting a fixed time interval $\Delta t = 1$

Theorem 2 (Numerical errors). For the initial value problem in Eq. (4) with finite terminal time T, the numerical error of the forward Euler method in Eq. (5) with K steps can be upper bounded by

$$\left\| \mathbf{e}_{T}^{(K)} \right\| \leq \frac{T \| \mathbf{L} \| \| \mathbf{X}_{0} \|}{2K} \left(e^{T \| \mathbf{L} \|} - 1 \right).$$

$$\tag{8}$$

- As T=K, the upper bound reduces to $c \cdot \left(e^{T \|\mathbf{L}\|} 1\right)$
- The numerical error increases exponentially with more propagation steps K=T

Limitations

- 1. Oversmoothing (asymptotic)
- 2. Numerical Error
- 3. Learning Risks
 - The two above issues will finally lead to a large learning risk

Theorem 3 (Learning risks). Consider a simple linear regression problem (\mathbf{X}, \mathbf{Y}) on graph, where the observed input features \mathbf{X} are generated by corrupting the ground truth features \mathbf{X}_c with the following inverse graph diffusion with time T^* :

$$\frac{d\widetilde{\mathbf{X}}_t}{dt} = \mathbf{L}\widetilde{\mathbf{X}}_t, \text{ where } \widetilde{\mathbf{X}}_0 = \mathbf{X}_c \text{ and } \widetilde{\mathbf{X}}_{T^*} = \mathbf{X}.$$
(9)

Denote the population risk with ground truth features as $R(\mathbf{W}) = \mathbb{E} \|\mathbf{Y} - \mathbf{X}_c \mathbf{W}\|^2$ and that of Euler method applied input \mathbf{X} (Eq. (5)) as $\hat{R}(\mathbf{W}) = \mathbb{E} \|\mathbf{Y} - [\mathbf{S}^{(\Delta t)}]^K \mathbf{X} \mathbf{W}\|^2$. Supposing that $\mathbb{E} \|\mathbf{X}_c\|^2 = M < \infty$, we have the following upper bound:

$$\hat{R}(\mathbf{W}) \leq R(\mathbf{W}) + \|\mathbf{W}\|^2 \left(M \left\| e^{T^* \mathbf{L}} \right\|^2 \left\| e^{-T^* \mathbf{L}} - e^{-\hat{T} \mathbf{L}} \right\|^2 + \mathbb{E} \left\| \mathbf{e}_{T^*}^{(K)} \right\|^2 \right).$$
(10)

To minimize the risk, we need

- 1) the optimal terminal time
- 2) minimized numerical errors

• Limitations

- 1. Oversmoothing (asymptotic)
- 2. Numerical Error
- 3. Learning Risks
 - The two above issues will finally lead to a large learning risk

Theorem 3 (Learning risks). Consider a simple linear regression problem (\mathbf{X}, \mathbf{Y}) on graph, where the observed input features \mathbf{X} are generated by corrupting the ground truth features \mathbf{X}_c with the following inverse graph diffusion with time T^* :

$$\frac{d\widetilde{\mathbf{X}}_t}{dt} = \mathbf{L}\widetilde{\mathbf{X}}_t, \text{ where } \widetilde{\mathbf{X}}_0 = \mathbf{X}_c \text{ and } \widetilde{\mathbf{X}}_{T^*} = \mathbf{X}.$$
(9)

Denote the population risk with ground truth features as $R(\mathbf{W}) = \mathbb{E} \|\mathbf{Y} - \mathbf{X}_c \mathbf{W}\|^2$ and that of Euler method applied input \mathbf{X} (Eq. (5)) as $\hat{R}(\mathbf{W}) = \mathbb{E} \|\mathbf{Y} - [\mathbf{S}^{(\Delta t)}]^K \mathbf{X} \mathbf{W}\|^2$. Supposing that $\mathbb{E} \|\mathbf{X}_c\|^2 = M < \infty$, we have the following upper bound:

$$\hat{R}(\mathbf{W}) \leq R(\mathbf{W}) + \|\mathbf{W}\|^2 \left(M \left\| e^{T^* \mathbf{L}} \right\|^2 \left\| e^{-T^* \mathbf{L}} - e^{-\hat{T} \mathbf{L}} \right\|^2 + \mathbb{E} \left\| \mathbf{e}_{T^*}^{(K)} \right\|^2 \right).$$
(10)

To minimize the risk, we need

- 1) the optimal terminal time 🗡
- 2) minimized numerical errors

Ideal: real-value SGC: integer

• Limitations

- 1. Oversmoothing (asymptotic)
- 2. Numerical Error
- 3. Learning Risks
 - The two above issues will finally lead to a large learning risk

Theorem 3 (Learning risks). Consider a simple linear regression problem (\mathbf{X}, \mathbf{Y}) on graph, where the observed input features \mathbf{X} are generated by corrupting the ground truth features \mathbf{X}_c with the following inverse graph diffusion with time T^* :

$$\frac{d\widetilde{\mathbf{X}}_t}{dt} = \mathbf{L}\widetilde{\mathbf{X}}_t, \text{ where } \widetilde{\mathbf{X}}_0 = \mathbf{X}_c \text{ and } \widetilde{\mathbf{X}}_{T^*} = \mathbf{X}.$$
(9)

Denote the population risk with ground truth features as $R(\mathbf{W}) = \mathbb{E} \|\mathbf{Y} - \mathbf{X}_c \mathbf{W}\|^2$ and that of Euler method applied input \mathbf{X} (Eq. (5)) as $\hat{R}(\mathbf{W}) = \mathbb{E} \|\mathbf{Y} - [\mathbf{S}^{(\Delta t)}]^K \mathbf{X} \mathbf{W}\|^2$. Supposing that $\mathbb{E} \|\mathbf{X}_c\|^2 = M < \infty$, we have the following upper bound:

$$\hat{R}(\mathbf{W}) \leq R(\mathbf{W}) + \|\mathbf{W}\|^2 \left(M \left\| e^{T^* \mathbf{L}} \right\|^2 \left\| e^{-T^* \mathbf{L}} - e^{-\hat{T} \mathbf{L}} \right\|^2 + \mathbb{E} \left\| \mathbf{e}_{T^*}^{(K)} \right\|^2 \right).$$
(10)

To minimize the risk, we need 1) the optimal terminal time 2) minimized numerical errors

> **Ideal:** $\Delta t \rightarrow 0$ SGC: fixed step size $\Delta t = 1$

Decoupling T (terminal time) and **K** (propagation steps)

- We take K and T as two free parameters
 - 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
 - 2. Given a **fixed** optimal T*, we can increase K for better precision without oversmoothing

Decoupling T (terminal time) and **K** (propagation steps)

- We take K and T as two free parameters
 - 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
 - 2. Given a **fixed** optimal T*, we can increase K for better precision without oversmoothing
- Decoupled Graph Convolution (DGC)

$$\hat{\mathbf{Y}}_{ ext{DGC}} = ext{softmax} \Big(\hat{\mathbf{X}}_T \mathbf{\Theta} \Big), ext{ where } \hat{\mathbf{X}}_T = ext{ode}_{ ext{int}} (\mathbf{X}, \Delta t, K)$$

• where ode_int(X, Δt , K) denotes the numerical intergration with step size Δt for K steps

Decoupling T (terminal time) and **K** (propagation steps)

- We take K and T as two free parameters
 - 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
 - 2. Given a **fixed** optimal T*, we can increase K for better precision without oversmoothing
- Decoupled Graph Convolution (DGC)

$$\hat{\mathbf{Y}}_{ ext{DGC}} = ext{softmax} \Big(\hat{\mathbf{X}}_T \mathbf{\Theta} \Big), ext{ where } \hat{\mathbf{X}}_T = ext{ode}_{ ext{int}} (\mathbf{X}, \Delta t, K)$$

- where ode_int(X, Δt , K) denotes the numerical intergration with step size Δt for K steps
- DGC-Euler with forward Euler scheme and step size $\Delta t = T/K$

$$\hat{\mathbf{X}}_T = \left[\mathbf{S}^{(T/K)}
ight]^K \mathbf{X}, ext{ where } \mathbf{S}^{(T/K)} = (1 - T/K) \cdot \mathbf{I} + (T/K) \cdot \mathbf{S}$$

Decoupling T (terminal time) and **K** (propagation steps)

- We take K and T as two free parameters
 - 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
 - 2. Given a **fixed** optimal T*, we can increase K for better precision without oversmoothing
- Decoupled Graph Convolution (DGC)

$$\hat{\mathbf{Y}}_{ ext{DGC}} = ext{softmax} \Big(\hat{\mathbf{X}}_T \mathbf{\Theta} \Big), ext{ where } \hat{\mathbf{X}}_T = ext{ode}_{ ext{int}} (\mathbf{X}, \Delta t, K)$$

- where ode_int(X, Δt , K) denotes the numerical intergration with step size Δt for K steps
- DGC-Euler with forward Euler scheme and step size $\Delta t = T/K$
- DGC-RK with the 4th-order Runge-Kutta (RK) method $\hat{\mathbf{X}}_{t+\Delta t} = \hat{\mathbf{X}}_t + \frac{1}{6}\Delta t(\mathbf{R}_1 + 2\mathbf{R}_2 + 2\mathbf{R}_3 + \mathbf{R}_4) \triangleq \mathbf{S}_{\mathrm{RK}}^{(\Delta t)} \hat{\mathbf{X}}_t$

Verifying the Benefits of DGC

- Theoretical Benefits
 - Comparing SGC to DGC

Aspects	SGC (Wu et al. 2019)	DGC-Euler (ours)
Asymptotic	Over-smoothing as T=K	A fixed T with optimal tradeoff
Numerical error	Exponentially large when K increases	With fixed T, increasing K leads to smaller numerical error
Learning Risk	Deviation from optimal T + Large numerical error	Reach optimal real-valued T + minimized numerical error with large K

Verifying the Benefits of DGC

- Theoretical Benefits
- Empirical Evidence

T: Either a smaller T or a larger T mixes the features up. **An optimal T** implies better separable features.

K: With fixed optimal T , too large step size Δt
(small K) leads to feature collapse, and large K makes features separable!

Figure 1: Input feature visualization of our DGC-Euler model with t-SNE [19] on the Cora dataset. Each point represents a node in the graph and its color denotes the class of the node.

• Performance on Semi-supervised Node Classification

Туре	Method	Cora	Citeseer	Pubmed
	GCN [8]	81.5	70.3	79.0
	GAT [20]	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3
	GraphSAGE [6]	82.2	71.4	75.8
	JKNet [26]	81.1	69.8	78.1
Non-linear	APPNP [9]	83.3	71.8	80.1
	GWWN [25]	82.8	71.7	79.1
	GraphHeat [24]	83.7	72.5	80.5
	CGNN [23]	84.2 ± 0.6	71.8 ± 0.7	76.8 ± 0.6
	GCDE [16]	83.8 ± 0.5	72.5 ± 0.5	$\textbf{79.9} \pm \textbf{0.3}$
	Label Propagation [29]	45.3	68.0	63.0
	DeepWalk [15]	70.7 ± 0.6	51.4 ± 0.5	76.8 ± 0.6
Linear	SGC [22]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
	SGC-PairNorm [28]	81.1	70.6	78.2
	DGC (ours)	$\textbf{83.5} \pm \textbf{0.0}$	$\textbf{74.5} \pm \textbf{0.2}$	$\textbf{80.2} \pm \textbf{0.1}$

Table 2: Test accuracy (%) of semi-supervised node classification on citation networks.

• Performance on Semi-supervised Node Classification

]	Гуре	Method	Cora	Citeseer	Pubmed
		GCN [8]	81.5	70.3	79.0
		GAT [20]	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3
		GraphSAGE [6]	82.2	71.4	75.8
		JKNet [26]	81.1	69.8	78.1
N	Non-linear	APPNP [9]	83.3	71.8	80.1
		GWWN [25]		71.7	79.1
				72.5	80.5
		margin	6	71.8 ± 0.7	76.8 ± 0.6
- 50	c hy a	large margin	5	72.5 ± 0.5	79.9 ± 0.3
Improves SV		mioii [29]	45.3	68.0	63.0
IIII		DeepWalk [15]	70.7 ± 0.6	51.4 ± 0.5	76.8 ± 0.6
L	Linear	SGC [22]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
		SGC-PairNorm [28]	81.1	70.6	78.2
	_	DGC (ours)	$\textbf{83.5} \pm \textbf{0.0}$	$\textbf{74.5} \pm \textbf{0.2}$	$\textbf{80.2} \pm \textbf{0.1}$

Table 2: Test accuracy (%) of semi-supervised node classification on citation networks.

 Performance on Sem 	ni-supervised	omnarab	le to SO	rA nonlin	ear GCNs!	
Table 2: Test acc	Table 2: Test accuracy (%) of			concation on citation networks.		
Туре	Method	Cora	Citeseer	Pubmed		
Non-linear	GCN [8] GAT [20] GraphSAGE [6] JKNet [26] APPNP [9] GWWN [25]	$81.583.0 \pm 0.782.281.183.365$	$\begin{array}{c} 70.3\\ 72.5\pm0.7\\ 71.4\\ 69.8\\ 71.8\\ 71.7\\ 72.5\\ 71.8\pm0.7\\ 72.5\pm0.5\end{array}$	$\begin{array}{c} 79.0 \\ 79.0 \pm 0.3 \\ 75.8 \\ 78.1 \\ 80.1 \\ 79.1 \\ 80.5 \\ 76.8 \pm 0.6 \\ 79.9 \pm 0.3 \end{array}$		
Improves see a Linear	DeepWalk [15] SGC [22] SGC-PairNorm [28]	$\begin{array}{r} 45.3 \\ 70.7 \pm 0.6 \\ 81.0 \pm 0.0 \\ 81.1 \end{array}$	$\begin{array}{c} 68.0 \\ 51.4 \pm 0.5 \\ 71.9 \pm 0.1 \\ 70.6 \end{array}$	$\begin{array}{c} 63.0 \\ 76.8 \pm 0.6 \\ 78.9 \pm 0.0 \\ 78.2 \end{array}$		
	DGC (ours)	$\textbf{83.5} \pm \textbf{0.0}$	$\textbf{74.5} \pm \textbf{0.2}$	$\textbf{80.2} \pm \textbf{0.1}$		

- Performance on Semi-supervised Node Classification
- Performance on Fully-supervised Node Classification

Туре	Method	Cora	Citeseer	Pubmed
	GCN [8]	85.77	73.58	88.13
Non-linear	GAT [20]	86.37	74.32	87.62
	JK-MaxPool [26]	89.6	77.7	-
	JK-Concat [26]	89.1	78.3	-
	JK-LSTM [26]	85.8	74.7	-
	APPNP [9]	90.21	79.8	86.29
Linear	SGC [22]	85.82	78.08	83.27
Linear	DGC (ours)	$\textbf{88.2} \pm \textbf{0.1}$	$\textbf{79.0} \pm \textbf{0.2}$	$\textbf{88.7} \pm \textbf{0.0}$

Table 3: Test accuracy (%) of fully-supervised node classification on citation networks.

• Performance on Semi-supervised Node Classification

- Performance on Fully-supervised Node Classification
- Performance on Large Scale Datasets

Experiments

Туре	Method	Cora	Citeseer	Pubmed
	GCN [8]	85.77	73.58	88.13
Non-linear	GAT [20]	86.37	74.32	87.62
	JK-MaxPool [26]	89.6	77.7	-
	JK-Concat [26]	89.1	78.3	-
	JK-LSTM [26]	85.8	74.7	-
	APPNP [9]	90.21	79.8	86.29
Linear	SGC [22]	85.82	78.08	83.27
Lineal	DGC (ours)	$\textbf{88.2} \pm \textbf{0.1}$	$\textbf{79.0} \pm \textbf{0.2}$	$\textbf{88.7} \pm \textbf{0.0}$

Table 4: Test accuracy (%) comparison with inductive methods on on a large scale dataset, Reddit. Reported results are averaged over 10 runs. OOM: out of memory.

Туре	Method	Acc.
Non-linear	GCN [8] FastGCN [3] GraphSAGE-GCN [6] GraphSAGE-mean [6] GraphSAGE-LSTM [6] APPNP [9]	OOM 93.7 93.0 95.0 95.4 95.0
Linear	RandDGI [21] SGC [22] DGC (ours)	93.3 94.9 95.8

- Empirical Understandings of DGC
 - Left: over-smoothing with increasing steps
 - Middle: robustness to feature noise
 - Right: computation time

A 9 B

Experiments

- Empirical Understandings of DGC
 - Left: graph Laplacian
 - Middle: numerical scheme
 - Right: terminal time

Takeaways

- The diffusion process can be understood through continuous PDEs
- This perspective inspires us to design more accurate and robust (linear) GCNs by simply decoupling T and K
- A properly designed linear GCN is comparable to SOTA nonlinear ones
- We should propose new alternatives that can truly benefit from nonlinear architectures

Thanks!

Q & A

Find more stuff about this work at <u>https://yifeiwang77.github.io/</u> Contact:

yifei_wang AT pku.edu.cn; yisen.wang AT pku.edu.cn