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Background

* Linear GCNs achieve comparable performance to nonlinear ones
* SGC (Simple Graph Convolution)
e Given input X, label Y, adjacency matrix A, SGC predicts with
YSGC == softmaX(SKX(-))

* 1) K propagation steps (core)
X®  8X* 1 whereS =D
» 2) linear classification

_1
O~ 2

A — X&) = ¢kx

|~

Ysac = softmax (X(K)Q)

e advantages: memory and parameter efficiency (preprocessed features)
» disadvantages: over-smoothing, inferior performance

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and
Kilian Q Weinberger. Simplifying graph convolutional networks. In ICML, 2019.



Equivalence between SGC and Graph Heat
Equation

* Key Insight from a continuous perspective
* SGC’s propagation = a (coarse) discretization of the graph diffusion equation

e Graph Heat Equation (GHE)

{ aX —LX,

dt
X X

* where L =1 — S is the graph Laplacian



Equation

* Key Insight from a continuous perspective

Equivalence between SGC and Graph Heat

* SGC’s propagation = a (coarse) discretization of the graph diffusion equation

e Graph Heat Equation (GHE)

{ 2 = -LX,
X =X
* where L =1 — S is the graph Laplacian

* Discretization
* Applying the forward Euler method with time interval At

Euler: Xt—l—At — X—t - AtLXt — X—t - At(I - S)Xt — [(1 - At)I + AtS]Xt

* Thus, SGC is the Euler discretization of GHE with step size At = 1

SGC propagation:

X®)  gx (k1)




Revealing SGC’s Fundamental Limitations

* Limitations
e 1. Oversmoothing (asymptotic)

* SGC will oversmooth with increasing propagation steps K =T — o
* We provide a continuous characterization of this phenomenon

Theorem 1 (Oversmoothing from a spectral view). Assume that the eigendecomposition of the
Laplacian matrixas L = Y-, Aiw;u;, with eigenvalues \; and eigenvectors ;. Then, the heat
equation (Eq. (4)) admits a closed-form solution at time t, known as the heat kernel H, = e t% =
Yty e Mtuyu, . Ast — oo, Hy asymptotically converges to a non-informative equilibrium as
t — 00, due to the non-trivial (i.e., positive) eigenvalues vanishing:

Y 0, ifXx>0 .
Ait ’ ? —
thme —{1, ks 0,2—1,...,71. @)



Revealing SGC’s Fundamental Limitations

* Limitations

e 2. Numerical Error
e Conseguence by adopting a fixed time interval At = 1

Theorem 2 (Numerical errors). For the initial value problem in Eq. (4) with finite terminal time T,
the numerical error of the forward Euler method in Eq. (5) with K steps can be upper bounded by

T||L||||X
He(TK)H < I 2”[1 ol (6T||L|| . 1). 8)

* As T=K, the upper bound reduces to ¢- (eT”L” - 1)
* The numerical error increases exponentially with more propagation steps K=T



Revealing SGC’s Fundamental Limitations

* Limitations

* 3. Learning Risks
* The two above issues will finally lead to a large learning risk

Theorem 3 (Learning risks). Consider a simple linear regression problem (X,Y ) on graph, where
the observed input features X are generated by corrupting the ground truth features X . with the
following inverse graph diffusion with time 1™ :

X, _ 5 = = _ .
5 = LX:, where Xo =X, and Xr- = X. ®) To minimize the risk, we need
Denote the population risk with ground truth features as R(W) = E||Y — X.W/||? and that of 1) the optimal terminal time
. 2 ce .
Euler method applied input X (Eq. (5)) as R(W) = E HY — [S(At)]K XWH . Supposing that 2) minimized numerical errors
E||X.||? = M < oo, we have the following upper bound:

A 2 ||| -7*L _tw|? (K)
R(W) <R(W) + |W]| MHe ‘ He —e H +1EHeT*

2
) . (10)



Revealing SGC’s Fundamental Limitations

e Limitations
e 1. Oversmoothing (asymptotic)
e 2. Numerical Error

* 3. Learning Risks
* The two above issues will finally lead to a large learning risk

Theorem 3 (Learning risks). Consider a simple linear regression problem (X,Y ) on graph, where
the observed input features X are generated by corrupting the ground truth features X . with the
following inverse graph diffusion with time T :

X, _ 5 = = _ .
g = X, where Xo =X, and X7. =X. ®) To minimize the risk, we need x
Denote the population risk with ground truth features as R(W) = E||Y — X.W/||? and that of 1) the optimal terminal time
. 2 ce .
Euler method applied input X (Eq. (5)) as R(W) = E HY — [S(At)]K XWH . Supposing that 2) minimized numerical errors
E||X.||? = M < oo, we have the following upper bound:

Ideal: real-value
SGC: integer

A 2 L||? || -T*L —7L||? x)||?
R(W) <R(W) + W] MHe ‘He —e H +1EHeT, H . (10)



Revealing SGC’s Fundamental Limitations

* Limitations

* 3. Learning Risks
* The two above issues will finally lead to a large learning risk

Theorem 3 (Learning risks). Consider a simple linear regression problem (X,Y ) on graph, where
the observed input features X are generated by corrupting the ground truth features X . with the
following inverse graph diffusion with time 1™ :

X _ < 2 2 _ .
5 = LX:, where Xo =X, and Xr- = X. ®) To minimize the risk, we need x
Denote the population risk with ground truth features as R(W) = E||Y — X.W/||? and that of 1) the optimal terminal time
. 2 ce .
Euler method applied input X (Eq. (5)) as R(W) = E HY — [S(At)]K XWH . Supposing that 2) minimized numerical errorsx
E||X.||? = M < oo, we have the following upper bound:

A 2 ||| -7*L _tw|? (K)
R(W) <R(W) + |W]| MHe ‘ He —e H +1EHeT*

)' (10) Ideal: At - 0
SGC: fixed step size At =1



A Simple Fix to All These Limitations!

Decoupling T (terminal time) and K (propagation steps)

* We take K and T as two free parameters
» 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
* 2. Given a fixed optimal T*, we can increase K for better precision without oversmoothing



A Simple Fix to All These Limitations!

Decoupling T (terminal time) and K (propagation steps)

* We take K and T as two free parameters
» 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
* 2. Given a fixed optimal T*, we can increase K for better precision without oversmoothing

e Decoupled Graph Convolution (DGC)

Ypac = softmax (XT(-)), where X1 = odept (X, At, K)

* where ode_int(X, At, K) denotes the numerical intergration with step size At for K steps



A Simple Fix to All These Limitations!

Decoupling T (terminal time) and K (propagation steps)

* We take K and T as two free parameters
» 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
* 2. Given a fixed optimal T*, we can increase K for better precision without oversmoothing

e Decoupled Graph Convolution (DGC)

Ypac = softmax (XT(-)), where X1 = odept (X, At, K)

* where ode_int(X, At, K) denotes the numerical intergration with step size At for K steps

* DGC-Euler with forward Euler scheme and step size At = T/K

A

K
Xy = [s(T/fQ] X, where ST/K) = (1 - T/K) -1+ (T/K) - S



A Simple Fix to All These Limitations!

Decoupling T (terminal time) and K (propagation steps)

* We take K and T as two free parameters
» 1. Flexibly choose T (real-valued) for an optimal tradeoff of smoothing
* 2. Given a fixed optimal T*, we can increase K for better precision without oversmoothing

e Decoupled Graph Convolution (DGC)

Ypac = softmax (XT(-)), where X1 = odept (X, At, K)

* where ode_int(X, At, K) denotes the numerical intergration with step size At for K steps
* DGC-Euler with forward Euler scheme and step size At = T/K

* DGC-RK with the 4th-order Runge-Kutta (RK) method  X.ai=X: + ¢ At(R: + 2R, + 2R; + Ry) 2 SEIX,



Verifying the Benefits of DGC

* Theoretical Benefits
* Comparing SGC to DGC

Aspects | SGC(Wu et al. 2019) DGC-Euler (ours)

Asymptotic Over-smoothing as T=K A fixed T with optimal tradeoff

Numerical error Exponentially large when K With fixed T, increasing K leads
increases to smaller numerical error

Learning Risk Deviation from optimal T + Reach optimal real-valued T +
Large numerical error minimized numerical error with

large K



Verifying the Benefits of DGC

 Theoretical Benefits
* Empirical Evidence

o
o2 o
?1&;’. wirks T
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Ry
fixed T
(T=5.3)
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Acc=57.9 Acc=17.8 Acc=82.0 Acc= 82.8 Acc=82.9

Figure 1: Input feature visualization of our DGC-Euler model with t-SNE [19] on the Cora dataset.

Each point represents a node in the graph and its color denotes the class of the node.

T: Either a smaller T or a
larger T mixes the features
up. An optimal T implies
better separable features.

K: With fixed optimal T,
too large step size At
(small K) leads to feature
collapse, and large K
makes features separable!




Experiments

e Performance on Semi-supervised Node Classification

Table 2: Test accuracy (%) of semi-supervised node classification on citation networks.

Type Method Cora Citeseer Pubmed
GCN [8] 81.5 70.3 79.0
GAT [20] 83.0+0.7 725+£0.7 79.0£0.3
GraphSAGE [6] 82.2 71.4 75.8
JKNet [26] 81.1 69.8 78.1

Non-linear APPNP [9] 83.3 71.8 80.1
GWWN [25] 82.8 71.7 79.1
GraphHeat [24] 83.7 72.5 80.5
CGNN [23] 842+0.6 71.8+0.7 76.8+0.6
GCDE [16] 83.8+0.5 725+£05 799+03
Label Propagation [29] 45.3 68.0 63.0
DeepWalk [15] 70.7+£0.6 514405 76.8+0.6

Linear SGC [22] 81.0 £ 0.0 71.94+0.1 789+0.0
SGC-PairNorm [28] 81.1 70.6 78.2
DGC (ours) 835+0.0 745+0.2 80.2+0.1




Experiments

* Performance on Semi-supervised Node Classification

Table 2: Test accuracy (%) of semi-supervised node classification on citation networks.

Type Method Cora Citeseer Pubmed
GCN [8] 81.5 70.3 79.0
GAT [20] 830 =07 725404 J190403
GraphSAGE [6] 82.2 71.4 75.8
JKNet [26] 81.1 69.8 78.1

Non-linear APPNP [9] 83 71.8 80.1

71.7 79.1
72.5 80.5
71.8£0.7 76.8£0.6
72505 79.9+£03

oe 68.0 63.0
DeepWalk [15] 70.7+£0.6 514=+£05 76.8+£0.6
SGC [22] 81000 719+£01 789+0.0
SGC-PairNorm [28] 81.1 70.6 78.2

DGC (ours) 835+0.0 745+0.2 80.2+0.1




Experiments

* Performance on Semi-superyj

Table 2: Test accuracy (%) of auo0n on citation networks.

Type Method Cora Citeseer Pubmed
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Experiments

* Performance on Fully-supervised Node Classification

Table 3: Test accuracy (%) of fully-supervised node classification on citation networks.

Type Method Cora Citeseer Pubmed
GCN [8] 85.77 73.58 88.13
Non-linear GAT [20] 86.37 74.32 87.62
JK-MaxPool [26] 89.6 77.7 -
JK-Concat [26] 89.1 78.3 -
JK-LSTM [26] 85.8 74.7 -
APPNP [9] 90.21 79.8 86.29
Li SGC [22] 85.82 78.08 83.27
inear

DGC (ours) 88.2+0.1 79.0+0.2 88.7+0.0




Experiments

° Performance on La rge Scale Datasets Table 4: Test accuracy (%) comparison with in-

ductive methods on on a large scale dataset, Red-
dit. Reported results are averaged over 10 runs.
Table 3: Test accuracy (%) of fully-supervised node classification on citation networks. OOM: out of memory.

Type Method Cora Citeseer Pubmed T Method m
GCN [8] 8577 73.58 88.13 ype =0 cc

Non-linear GAT [20] 86.37 74.32 87.62 GCN [8] OOM
JK-MaxPool [26] 89.6 77.7 - FastGCN [3] 93.7
JK-Concat [26] 89.1 78.3 - Non-li GraphSAGE-GCN [6] 93.0
JK-LSTM [26] 85.8 74.7 - ON-UNCAl  GraphSAGE-mean [6]  95.0
APPNP [9] 90.21 79.8 86.29 GraphSAGE-LSTM [6] 95.4

Linear SGC [22] 85.82 78.08 83.27 APPNP [9] 95.0
DGC (ours) 882+0.1 79.0+0.2 88.7+0.0 RandDGI [21] 93.3

Linear SGC [22] 94.9

DGC (ours) 95.8




Experiments

* Empirical Understandings of DGC

Test Acc (%)

B
o

* Left: over-smoothing with increasing steps

e Middle: robustness to feature noise

* Right: computation time
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Experiments

* Empirical Understandings of DGC
* Left: graph Laplacian
* Middle: numerical scheme
* Right: terminal time
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Takeaways

* The diffusion process can be understood through continuous PDEs

* This perspective inspires us to design more accurate and robust
(linear) GCNs by simply decoupling T and K

* A properly designed linear GCN is comparable to SOTA nonlinear ones

* We should propose new alternatives that can truly benefit from
nonlinear architectures
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Q&A

Find more stuff about this work at https://yifeiwang77.github.io/
Contact:

yifei_wang AT pku.edu.cn; yisen.wang AT pku.edu.cn
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