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Background: Contrastive Learning Learns Clustered
Representations

< 2 >

• Contrastive Learning (CL)
• arguably the SOTA method for Self-Supervised Learning (SSL)

• Simple Learning Paradigm (e.g., InfoNCE)
• Pull close positive samples x+: random augmentations of the

same samples
• Push away negative samples x-: augmented samples of

independent samples

• Empirically, CL can successfully cluster samples together

But Why?

Figure from Chen et al. A Simple Framework for Contrastive 
Learning of Visual Representations. ICML 2020.
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Previous Theoretical Understandings and Their Limitations
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• Arora et al. (2019)
• Establish upper and lower bounds between contrastive loss and downstream loss
• Assume that positive samples (x, x’) are conditionally independent given y
• -> too strong assumption, which hardly holds in practice

• Wang & Isola (2020)
• Propose the perspective of alignment and uniformity
• However, we prove that these two properties alone are not enough!
• Prop 3.1: there exists cases when a random encoder also minimizes the InfoNCE loss
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Previous Theoretical Understandings and Limitations
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• Arora et al. (2019)
• Establish upper and lower bounds on downstream loss using contrastive loss
• Assume that positive samples (x, x’) are conditionally independent given y
• -> too strong assumption, which hardly holds in practice

• Wang & Isola (2020)
• Propose the perspective of alignment and uniformity
• However, we prove that these two properties alone are not enough!
• Prop 3.1: there exists cases when a random encoder also minimizes the InfoNCE loss

How to establish guarantees on downstream performance
with minimal and practical assumptions?
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A New Augmentation Overlap Theory for Contrastive Learning
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• Augmentation Graph G
• Nodes: natural samples xi
• Edge: eij exists if the two have augmentation overlap

• Three Practical Assumptions (informal)
• Augmentations do not change the labels
• The intra-class augmentation subgraph is connected
• Good alignment of positive samples (encoder capacity)

• Obtained Guarantees on Downstream Performance (measured by CE loss)

• For the optimal encoder f*, contrastive learning is almost as good as supervised learning (with
asymptotically closed upper and lower bounds)
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Measuring Augmentation Overlap
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• An unsupervised evaluation metric ARC (Average Relative Confusion)
• Designed based on our augmentation overlap theory
• Aligns well with downstream accuracy across different augmentation strength
• Can be used for unsupervised model selection!!

The code for computing ARC is available at
https://github.com/zhangq327/ARC

https://github.com/zhangq327/ARC
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Takeaways

< 7 >

• Contributions
• We characterize the failure of previous analysis of contrastive learning.
• Theoretically, we establish a new augmentation overlap theory with guarantees on downstream

performance using more practical assumptions.
• Empirically, we show the theoretically inspired ARC metric is a good indicator for unsupervised

evaluation of contrastive learning.

• Key insight: an alternative understanding of contrastive learning
• the role of aligning positive samples is more like a surrogate task than an ultimate goal
• the overlapped augmented views (i.e., the chaos) create a ladder for contrastive learning to 

gradually learn class-separated representations.

Chaos isn't a pit. Chaos is a ladder.

-- “Littlefinger” Petyr Baelish
Game of Thrones



Thanks for Listening


