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Background: Contrastive Learning Learns Clustered
Representations

« Contrastive Learning (CL)
« arguably the SOTA method for Self-Supervised Learning (SSL)

 Simple Learning Paradigm (e.g.. INfoNCE)

» Pull close positive samples x*: random augmentations of the
same samples

« Push away negative samples x—: augmented samples of
independent samples
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- Empirically, CL can successfully cluster samples together

Before Training After Training
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Figure from Chen et al. A Simple Framework for Contrastive
Learning of Visual Representations. ICML 2020.

But Why?
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Previous Theoretical Understandings and Their Limitations ez ¥
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- Aroraetal. (2019)

» Establish upper and lower bounds between contrastive loss and downstream loss
« Assume that positive samples (x, x’) are conditionally independent given y
« —> t00 strong assumption, which hardly holds in practice

« Wang & Isola (2020)
» Propose the perspective of alignment and uniformity
« However, we prove that these two properties alone are not enough!
* Prop 3.1: there exists cases when a random encoder also minimizes the INfoONCE |oss
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and positive samples are perfect aligned. Each
color denotes a class.
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Previous Theoretical Understandings and Limitations

« Arora et al. (2019)
» Establish upper and lower bounds on downstream loss using contrastive 0ss
« Assume that positive samples (x, x’) are conditionally independent given y
« —> t00 strong assumption, which hardly holds in practice

« Wang & Isola (2020)
» Propose the perspective of alignment and uniformity

« However, we prove that these two properties alone are not enough!
« Prop 3.1: there exists cases when a random encoder also minimizes the INnfoNCE loss

How to establish guarantees on downstream performance
with minimal and practical assumptions?
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A New Augmentation Overlap Theory for Contrastive Learning e g X
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- Augmentation Graph g

« Nodes: natural samples x;
- Edge: g exists if the two have augmentation overlap %
« Three Practical Assumptions (informal)

« Augmentations do not change the labels

« The intra—class augmentation subgraph is connected Augmentation Graph (b Intra-class samples are more
« Good alignment of positive samples (encoder capacity) {inputispacs) AAKERVI A BIEDIECTICHS!

- Obtained Guarantees on Downstream Performance (measured by CE loss)

Lnee(f*) -0 (M_l/z) < Log(f*) +log(M/K) < Lnce(f*) + O (M_l/z) -

 For the optimal encoder f*, contrastive learning is almost as good as supervised learning (with
asymptotically closed upper and lower bounds)
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Measuring Augmentation Overlap
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« An unsupervised evaluation metric ARC (Average Relative Confusion)
» Designed based on our augmentation overlap theory
« Aligns well with downstream accuracy across different augmentation strength
» Can be used for unsupervised model selection!!
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Figure 7: Average Relative Confusion (ARC) and downstream accuracy v.s. different augmentation
strength on CIFAR-10 (SimCLR) with different number of nearest neighbors k.

Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap

The code for computing ARC is available at
https://github.com/zhangg327/ARC
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https://github.com/zhangq327/ARC

Takeaways
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« Contributions

« We characterize the failure of previous analysis of contrastive learning.

» Theoretically, we establish a new augmentation overlap theory with guarantees on downstream
performance using more practical assumptions.

« Empirically, we show the theoretically inspired ARC metric is a good indicator for unsupervised
evaluation of contrastive learning.

« Key insight: an alternative understanding of contrastive learning

» the role of aligning positive samples is more like a surrogate task than an ultimate goal

- the overlapped augmented views (i.e., the chaos) create a ladder for contrastive learning to
gradually learn class—separated representations.

Chaos isn't a pit. Chaos is a ladder.
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CHAOS IS A LADDER."

-- “Littlefinger” Petyr Baelish
Game of Thrones
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Thanks for Listening



