ECML PKDD 2021

Reparameterized Sampling for Generative Adversarial Networks

Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin

- GANs learn to generate images with an adversarial game
 - between a generator (G) and a discriminator (D)

- GANs learn to generate images with an adversarial game
 - between a generator (G) and a discriminator (D)
- After training, the discriminator is thrown away, and only the generator is left for generating images

• But wait!

Is the discriminator (D) really useless?

• But wait!

We can use D to further improve sample quality!

Wasted Wealth in the Discriminator

- Goal: approximating data distribution p_d(x)
- What we have: (imperfect) generator distribution $p_g(x)$
- Goodfellow et al. (2014): a perfect D learns density ratio

$$D(\mathbf{x}) = rac{p_d(\mathbf{x})}{p_d(\mathbf{x}) + p_g(\mathbf{x})} \hspace{2mm} \Rightarrow \hspace{2mm} rac{p_d(\mathbf{x})}{p_g(\mathbf{x})} = rac{1}{D(\mathbf{x})^{-1}-1}$$

• Leveraging this information in D, we can further bridge the gap between $p_g(x)$ and $p_d(x)$ and get closer to the data distribution!

Bridging the distribution gap with MCMC

- A natural solution is MCMC (Markov chain Monte Carlo)
 - starts from the initial distribution $p_0(x)=p_g(x)$
 - gradually converges to the target distribution $p_t(x) = p_d(x)$
- Metropolis-Hastings (MH) algorithm
 - 1. initial state x_0 : draw a sample from the generator $p_g(x)$
 - 2. draw a proposal x' from a proposal distribution $q(x'|x_k)$
 - 3. MH-test: accept x' by flipping a coin with probability $\alpha(x', x_k)$, which is knowns as the MH acceptance ratio, or MH ratio

$$lphaig(\mathbf{x}',\mathbf{x}_kig) = \minig(1,rac{p_t(\mathbf{x}')q(\mathbf{x}_k|\mathbf{x}')}{p_t(\mathbf{x}_k)q(\mathbf{x}'||\mathbf{x}_k)}ig)\in[0,1].$$

- if x' is accepted, we have $x_{k+1}=x'$
- if x' is rejected, we have x_{k+1}=x_k

Bridging the distribution gap with MCMC

- A natural solution is MCMC (Markov chain Monte Carlo)
 - starts from the initial distribution $p_0(x)=p_g(x)$
 - gradually converges to the target distribution $p_t(x) = p_d(x)$
- Metropolis-Hastin 1 Igorithm
 1. initial st problem a sample from the generator pg(x)
 2. draw a phone and x' from *a proposal distribution q(x' | x_k)*

 - 3. MH-test: accept x' by flipping a coin with probability $\alpha(x', x_k)$, which is knowns as the MH acceptance ratio, or MH ratio

$$lphaig(\mathbf{x}',\mathbf{x}_kig) = \minig(1,rac{p_t(\mathbf{x}')q(\mathbf{x}_k|\mathbf{x}')}{p_t(\mathbf{x}_k)q(\mathbf{x}'||\mathbf{x}_k)}ig)\in[0,1].$$

- if x' is accepted, we have $x_{k+1} = x'$
- if x' is rejected, we have $x_{k+1} = x_k$

Bridging the distribution gap with MCMC

- A natural solution is MCMC (Markov chain Monte Carlo)
 - starts from the initial distribution $p_0(x)=p_g(x)$
 - gradually converges to the target distribution $p_t(x) = p_d(x)$
- Metropolis-Hastin 1 Igorithm 1 al st problem a sample from the generator $p_g(x)$ a plassi x' from *a proposal distribution q(x'|x_k)* MH-test: accept x' by *flipping a coin with probability* $\alpha(x', x_k)$, which is knowns as the MH acceptance ratio, or MH ratio

$$lphaig(\mathbf{x}',\mathbf{x}_kig) = \minig(1,rac{p_t(\mathbf{x}')q(\mathbf{x}_k|\mathbf{x}')}{p_t(\mathbf{x}_k)q(\mathbf{x}'||\mathbf{x}_k)}ig)\in[0,1].$$

- if x' is accepted, we have $x_{k+1}=x'$
- if x' is rejected, we have $x_{k+1} = x_k$

MH-GAN and its Limitations

• Problem 1: MH-GAN adopts an independent proposal, i.e.,

$$\mathbf{x}' \sim qig(\mathbf{x}'|\mathbf{x}_kig) = qig(\mathbf{x}'ig) = p_g(\mathbf{x}').$$

• Problem 2: it admits a tractable MH ratio,

$$lpha_{ ext{MH}}ig(\mathbf{x}',\mathbf{x}_kig) = \minig(1,rac{p_d(\mathbf{x}')q(\mathbf{x}_k)}{p_d(\mathbf{x}_k)q(\mathbf{x}')}ig) = \minig(1,rac{D(\mathbf{x}_k)^{-1}-1}{D(\mathbf{x}')^{-1}-1}ig)$$

- Achilles' heel: sample inefficiency due to independent proposal
 - acceptance ratio could be very low (<5% in practice)
 - the chain can be trapped for a very long time

Improving Sample Efficiency...But How?

- It is natural to consider a *dependent* (DEP) proposal $q(x'|x_k)$
- Two problems occur:
- 1) Hard to design proposals in the *high-dimensional space* $oldsymbol{X}$
 - complex, highly non-convex landscape is hard to explore
- 2) The MH ratio is *no longer tractable*!

$$lpha_{ ext{DEP}}ig(\mathbf{x}',\mathbf{x}_kig) = \minigg(1,rac{p_d(\mathbf{x}')q(\mathbf{x}_k|\mathbf{x}')}{p_d(\mathbf{x}_k)q(\mathbf{x}'|\mathbf{x}_k)}igg),$$

• p_d(x) is unknown!

Improving Sample Efficiency...But How?

- It is natural to consider a *dependent* (DEP) proposal $q(x'|x_k)$
- Two problems occur:
- 1) Hard to design proposals in the *high-dimensional space* $oldsymbol{X}$
 - complex, highly non-convex landscape is hard to explore
- 2) The MH ratio is *no longer tractable*!

$$lpha_{ ext{DEP}}ig(\mathbf{x}',\mathbf{x}_kig) = \minigg(1,rac{p_d(\mathbf{x}')q(\mathbf{x}_k|\mathbf{x}')}{p_d(\mathbf{x}_k)q(\mathbf{x}'|\mathbf{x}_k)}igg),$$

• p_d(x) is unknown!

Does it puts dependent proposals to death? NO!

Our Solution: Transition in the Latent Space!

• In GANs, we learn to map from a *low-dimensional latent space* \mathcal{Z} to a *high-dimensional sample space* \mathcal{X} with the generator G

$$\mathbf{x} = G(\mathbf{z}), \quad \mathbf{z} \sim p_0(\mathbf{z}),$$

- leveraging structural information to design better sampling trajectories
- Insight: it will be a lot easier to design transitions in the latent space
 - a structured proposal with lower dimensionality & simpler geometry
- Perhaps surprisingly, it also leads to a *tractable MH ratio!*

Our Solution: Transition in the Latent Space!

• In GANs, we learn to map from a *low-dimensional latent space* \mathcal{Z} to a *high-dimensional sample space* \mathcal{X} with the generator G

$$\mathbf{x} = G(\mathbf{z}), \quad \mathbf{z} \sim p_0(\mathbf{z}),$$

- leveraging structural information to design better sampling trajectories
- Insight: it will be a lot easier to design transitions in the latent space
 - a structured proposal with lower dimensionality & simpler geometry
- Perhaps surprisingly, it also leads to a *tractable MH ratio!*

Method: reparameterizating q(x'|x) -> q(z'|z)

 $\log q_{\text{REP}}(\mathbf{x}'|\mathbf{x}_k) = \log q(\mathbf{x}'|\mathbf{z}_k) = \log q(\mathbf{z}'|\mathbf{z}_k) - \frac{1}{2}\log \det J_{\mathbf{z}'}^{\top}J_{\mathbf{z}'},$

REParameterized (REP) Proposal

- It reparameterizes $q_{REP}(x' | x_k)$ with two coupling Markov chains
 - latent-space Markov chain: *draw a latent proposal* z' from $q(z'|z_k)$
 - generator: *push the latent z' forward* and get sample proposal x'=G(z')
 - sample-space Markov chain: *decide the acceptance* of x'=G(z')

Tractable MH criterion

The following theorem shows that our REP proposal admits a tractable MH ratio for general latent proposals q(z'|z_k)

Theorem 1. Consider a Markov chain of GAN samples $\mathbf{x}_{1:K}$ with initial distribution $p_g(\mathbf{x})$. For step k + 1, we accept our REP proposal $\mathbf{x}' \sim q_{\text{REP}}(\mathbf{x}'|\mathbf{x}_k)$ with probability

$$\alpha_{\text{REP}}\left(\mathbf{x}', \mathbf{x}_{k}\right) = \min\left(1, \ \frac{p_{0}(\mathbf{z}')q(\mathbf{z}_{k}|\mathbf{z}')}{p_{0}(\mathbf{z}_{k})q(\mathbf{z}'|\mathbf{z}_{k})} \cdot \frac{D(\mathbf{x}_{k})^{-1} - 1}{D(\mathbf{x}')^{-1} - 1}\right),\tag{9}$$

i.e. let $\mathbf{x}_{k+1} = \mathbf{x}'$ if \mathbf{x}' is accepted and $\mathbf{x}_{k+1} = \mathbf{x}_k$ otherwise. Further assume the chain is irreducible, aperiodic and not transient. Then, according to the Metropolis-Hastings algorithm, the stationary distribution of this Markov chain is the data distribution $p_d(\mathbf{x})$ [6].

 it also reduces to MH-GAN's MH ratio (as a special case) when adopting an independent proposal q(z'|z)=q(z')

Proof Sketch

- Change of variables due to reparameterization
 - the generator $\log p_g(\mathbf{x})|_{\mathbf{x}=G(\mathbf{z})} = \log p_0(\mathbf{z}) \frac{1}{2} \log \det J_{\mathbf{z}}^\top J_{\mathbf{z}}.$

• the proposal
$$\log q_{\text{REP}}(\mathbf{x}'|\mathbf{x}_k) = \log q(\mathbf{x}'|\mathbf{z}_k) = \log q(\mathbf{z}'|\mathbf{z}_k) - \frac{1}{2}\log \det J_{\mathbf{z}'}^{\top}J_{\mathbf{z}'},$$

• Combined into the MH acceptance

$$\begin{aligned} \alpha_{\text{REP}}(\mathbf{x}', \mathbf{x}_k) &= \frac{p_d(\mathbf{x}') q(\mathbf{x}_k | \mathbf{x}')}{p_d(\mathbf{x}_k) q(\mathbf{x}' | \mathbf{x}_k)} = \frac{p_d(\mathbf{x}') q(\mathbf{z}_k | \mathbf{z}') \left(\det J_{\mathbf{z}_k}^\top J_{\mathbf{z}_k}\right)^{-\frac{1}{2}} p_g(\mathbf{x}_k) p_g(\mathbf{x}')}{p_d(\mathbf{x}_k) q(\mathbf{z}' | \mathbf{z}_k) \left(\det J_{\mathbf{z}'}^\top J_{\mathbf{z}'}\right)^{-\frac{1}{2}} p_g(\mathbf{x}') p_g(\mathbf{x}_k)} \\ &= \frac{q(\mathbf{z}_k | \mathbf{z}') \left(\det J_{\mathbf{z}_k}^\top J_{\mathbf{z}_k}\right)^{-\frac{1}{2}} p_0(\mathbf{z}') \left(\det J_{\mathbf{z}'}^\top J_{\mathbf{z}'}\right)^{-\frac{1}{2}} (D(\mathbf{x}_k)^{-1} - 1)}{q(\mathbf{z}' | \mathbf{z}_k) \left(\det J_{\mathbf{z}'}^\top J_{\mathbf{z}'}\right)^{-\frac{1}{2}} p_0(\mathbf{z}_k) \left(\det J_{\mathbf{z}_k}^\top J_{\mathbf{z}_k}\right)^{-\frac{1}{2}} (D(\mathbf{x}')^{-1} - 1)} \\ &= \frac{p_0(\mathbf{z}') q(\mathbf{z}_k | \mathbf{z}') (D(\mathbf{x}_k)^{-1} - 1)}{p_0(\mathbf{z}_k) q(\mathbf{z}' | \mathbf{z}_k) (D(\mathbf{x}')^{-1} - 1)}, \end{aligned}$$

UNIVERSITY MILES

Case Study: Latent Langevin Monte Carlo

- We can use gradients to explore the landscape more efficiently
- Sample-level Langevin Monte Carlo (LMC)

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{\tau}{2} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_k) + \sqrt{\tau} \cdot \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

- is intractable because $p_t(x)=p_d(x)$ is unknown
- Latent Langevin Monte Carlo (L2MC) is tractable w/ reparameterization!

$$\begin{aligned} \mathbf{z}' &= \mathbf{z}_k + \frac{\tau}{2} \nabla_{\mathbf{z}} \log p_t(\mathbf{z}_k) + \sqrt{\tau} \cdot \boldsymbol{\varepsilon} \\ &= \mathbf{z}_k + \frac{\tau}{2} \nabla_{\mathbf{z}} \log \frac{p_t(\mathbf{z}_k) \left(\det J_{\mathbf{z}_k}^\top J_{\mathbf{z}_k} \right)^{-\frac{1}{2}}}{p_0(\mathbf{z}_k) \left(\det J_{\mathbf{z}_k}^\top J_{\mathbf{z}_k} \right)^{-\frac{1}{2}}} + \frac{\tau}{2} \nabla_{\mathbf{z}} \log p_0(\mathbf{z}_k) + \sqrt{\tau} \cdot \boldsymbol{\varepsilon} \\ &= \mathbf{z}_k + \frac{\tau}{2} \nabla_{\mathbf{z}} \log \frac{p_d(\mathbf{x}_k)}{p_g(\mathbf{x}_k)} + \frac{\tau}{2} \nabla_{\mathbf{z}} \log p_0(\mathbf{z}_k) + \sqrt{\tau} \cdot \boldsymbol{\varepsilon} \\ &= \mathbf{z}_k - \frac{\tau}{2} \nabla_{\mathbf{z}} \log (D^{-1}(\mathbf{x}_k) - 1) + \frac{\tau}{2} \nabla_{\mathbf{z}} \log p_0(\mathbf{z}_k) + \sqrt{\tau} \cdot \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{aligned}$$

A Unified Framework for GAN Sampling

- REP-GAN: an efficient sampling method for GANs (also work for WGAN)
 - REP proposal that works for general latent dependent proposals
 - Tractable MH ratio $\alpha_{REP}(x', x_k)$
 - A practical latent proposal: L2MC
- It serves as a general recipe for GAN sampling, as we take previous work as our special cases

samping moonamining.					
Method	Rejection step	Markov chain	Latent gradient proposal		
GAN	×	×	×		
DRS $[2]$	\checkmark	×	×		
MH-GAN [27]	\checkmark	\checkmark	×		
DDLS [5]	×	\checkmark	\checkmark		
REP-GAN (ours)	\checkmark	\checkmark	\checkmark		

Table 1: Comparison of sampling methods for GANs in terms of three effective sampling mechanisms.

Experiments on Synthetic Datasets

- Manifold learning of Swiss Roll
 - Less discontinuous points
 - More robust to step size

Experiments on Synthetic Datasets

- Multi-modal Experiments of Mixture of Gaussians
 - Less missing modes
 - More robust to step size

Experiments on Real-world Datasets

- CIFAR-10 and CelebA with DCGAN and WGAN
 - Clear improvement of sample quality

Table 2: Inception Scores of different sampling methods on CIFAR-10 and CelebA, with the DCGAN and WGAN backbones.

Mathad	CIFAR-10		CelebA	
Method	DCGAN	WGAN	DCGAN	WGAN
GAN	3.219	3.740	2.332	2.788
DRS $[2]$	3.073	3.137	2.869	2.861
MH-GAN [27]	3.225	3.851	3.106	2.889
DDLS $[5]$	3.152	3.547	2.534	2.862
REP-GAN (ours)	3.541	4.035	2.686	2.943

Experiments on Real-world Datasets

CIFAR-10 and CelebA with DCGAN and WGAN

- Clear improvement of sample quality
- Significantly improved sample efficiency
 - average acceptance ratio: 5% -> around 40%

Table 3: Average Inception Score (a) and acceptance ratio (b) vs. training epochs with DCGAN on CIFAR-10.

Epoch	20	21	22	23	24
GAN	2.482 ± 0.027	3.836 ± 0.046	3.154 ± 0.014	3.383 ± 0.046	3.219 ± 0.036
MH-GAN	2.356 ± 0.023	3.891 ± 0.040	3.278 ± 0.033	3.458 ± 0.029	3.225 ± 0.029
DDLS	2.419 ± 0.021	3.332 ± 0.025	2.996 ± 0.035	3.255 ± 0.045	3.152 ± 0.028
REP-GAN	2.487 ± 0.019	$\textbf{3.954} \pm 0.046$	$\textbf{3.294} \pm 0.030$	$\textbf{3.534} \pm 0.035$	$\textbf{3.541}\pm0.038$

(a) Inception Score (mean \pm std)

(b) Average Acceptance Ratio (mean \pm std)

Epoch	20	21	22	23	24
MH-GAN	0.028 ± 0.143	0.053 ± 0.188	0.060 ± 0.199	0.021 ± 0.126	0.027 ± 0.141
REP-GAN	0.435 ± 0.384	0.350 ± 0.380	0.287 ± 0.365	0.208 ± 0.335	0.471 ± 0.384

Takeaways

- GANs: both D and G contain useful information to cultivate
- Variational inference: sampling methods can be used to further bridge the variational distribution and the data distribution
- Sampling: low-dimensional latent space is easier to play around, and enjoys better sample efficiency
- MCMC: transition reparameterization for implicit models (like GANs) can also be tractable

Thanks!

Q & A

For more details, please refer to our paper: <u>https://arxiv.org/abs/2107.00352</u> More interesting papers @ PKU ZERO lab: <u>https://zero-lab-pku.github.io/</u> Contact:

yifei_wang AT pku.edu.cn; yisen.wang AT pku.edu.cn