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Background

* GANs learn to generate images with an adversarial game
* between a generator (G) and a discriminator (D)
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Background

* GANs learn to generate images with an adversarial game
* between a generator (G) and a discriminator (D)

e After training, the discriminator is thrown away, and only the
generator is left for generating images
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Background

e But wait!

Is the discriminator (D) really useless?
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Background

e But wait!

We can use D to further improve sample quality!
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Wasted Wealth in the Discriminator

* Goal: approximating data distribution p4(x)
* What we have: (imperfect) generator distribution p,(x)
* Goodfellow et al. (2014): a perfect D learns density ratio

D(x) = pd(x) N Pa(x) _ 1

Pa(x) + pg(%) py(x) D(x)t-1

* Leveraging this information in D, we can further bridge the gap between
ps(x) and py(x) and get closer to the data distribution!



Bridging the distribution gap with MCMC

* A natural solution is MCMC (Markov chain Monte Carlo)

* starts from the initial distribution py(x)=pg(x)
* gradually converges to the target distribution p.(x)= p4(x)

* Metropolis-Hastings (MH) algorithm
* 1. initial state xy: draw a sample from the generator p,(x)
e 2. draw a proposal x’ from a proposal distribution q(x’|x,)

* 3. MH-test: accept x’ by flipping a coin with probability a(x’, x;), which is
knowns as the MH acceptance ratio, or MH ratio

(4 p)alx)
a(x, k;) — (1, pt(Xk)q(X'HXk)) e [0,1].

 if X’ is accepted, we have x,,;=x’
* if X’ is rejected, we have x,,,=X,
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Bridging the distribution gap with MCMC

* A natural solution is MCMC (Markov chain Monte Carlo)

* starts from the initial distribution py(x)=pg(x)
e gradually converges to thas

5. MH test accept x’ by flipping a coin with probability a(x Xy), Which is
knowns as the MH acceptance ratio, or MH ratio

PO ) gy

p(xx)q(x'||xx)

a(x’, xk) = min (1,

 if X’ is accepted, we have x,,;=x’
* if X’ is rejected, we have x,,,=X,



MH-GAN and its Limitations

* Problem 1: MH-GAN adopts an independent proposal, i.e.,

x' ~ q(x'|xz) = q(x') = py(x').

onvn (X', X;) = min (1 pa(x)q(xx) ) = min (1, D(xr)  —1 )

" pa(xx)q(x') D(x')' -1

* Achilles’ heel: sample inefficiency due to independent proposal @
e acceptance ratio could be very low (<5% in practice)
* the chain can be trapped for a very long time

Turner, R., Hung, J., Frank, E., Saatchi, Y. and Yosinski, J. Metropolis-Hastings Generative Adversarial Networks. In ICML.. 2019.



Improving Sample Efficiency...But How?

* |t is natural to consider a dependent (DEP) proposal q(x’|x,)
* Two problems occur:

* 1) Hard to design proposals in the high-dimensional space X
* complex, highly non-convex landscape is hard to explore

no longer tractable! @
pa(x')q(xx|x)

/ .
apep (X', Xz) = min| 1, ),
( ) ( pd(Xk)CI(X'|Xk)

* py4(x) is unknown!



Improving Sample Efficiency...But How?

* |t is natural to consider a dependent (DEP) proposal q(x’|x,)
* Two problems occur:

* 1) Hard to design proposals in the high-dimensional space X
* complex, highly non-convex landscape is hard to explore

no longer tractable! @
pa(x')q(xx|x') )

/ .
apep (X', Xz) = min| 1,
( ) ( pa(xz)q(x'|xx)

* py4(x) is unknown!

Does it puts dependent proposals to death? NO!



Our Solution: Transition in the Latent Space! ‘:

* In GANs, we learn to map from a low-dimensional latent space Z to a
high-dimensional sample space X with the generator G

x =G(z), 2z~ p(z),
* leveraging structural information to design better sampling trajectories

* Insight: it will be a lot to design transitions in the latent space
 a structured proposal with lower dimensionality & simpler geometry

* Perhaps surprisingly, it also leads to a



Our Solution: Transition in the Latent Space! ‘:

* In GANs, we learn to map from a low-dimensional latent space Z to a
high-dimensional sample space X with the generator G

x =G(z), 2z~ p(z),
* leveraging structural information to design better sampling trajectories

* Insight: it will be a lot to design transitions in the latent space
 a structured proposal with lower dimensionality & simpler geometry

* Perhaps surprisingly, it also leads to a

Method: reparameterizating q(x’|x) -> q(z’ | z)

1
log griep (X'|x1) = log q(x'|z),) = log q(z'|z).) — 5 log det J,\ J,/,



REParameterized (REP) Proposal

* |t reparameterizes qrep(X’ | %) With two coupling Markov chains
* latent-space Markov chain: draw a latent proposal z’ from q(z’ | z,)
e generator: push the latent z’ forward and get sample proposal x'=G(z’)
* sample-space Markov chain: decide the acceptance of x'=G(z’)
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Tractable MH criterion

* The following theorem shows that our REP proposal admits a tractable
MH ratio for general latent proposals q(z’[z,)

Theorem 1. Consider a Markov chain of GAN samples X1. ;¢ with initial distri-
bution py(x). For step k + 1, we accept our REP proposal X" ~ qrep (X'|x)) with

probability

; ! ‘ / 1) ‘ -1 l
OREP (X,, X;‘.) = min <l\ [)(](Z )(I(Z}; ‘Z ) . (XI;) 1 ) : (())
po(zr)q(z'|zr) D(x')~! —1

i.e. let xpp1 = X' if X' is accepted and X1 = Xp otherwise. Further assume
the chain is irreducible, aperiodic and not transient. Then, according to the
Metropolis-Hastings algorithm, the stationary distribution of this Markov chain

is the data distribution py(x) [6].

* it also reduces to MH-GAN’s MH ratio (as a special case) when adopting an
independent proposal q(z’|z)=q(z’)



Proof Sketch

* Change of variables due to reparameterization

1 _
e the generator log py(X)|x=c(z) = logpo(z) — 3 log det .J, J,.
* the proposal  loggrer(x'|xx) = logg(x

* Combined into the MH acceptance

1
x'|zy) = log q(2'|z),) — 3 log det ./z], s

pa (x') q (xi|x)  pa(X')q(zi|2’) (det J,, Jz, ) 71); Xk )Pg (X’

(
arep (X', x;) = : =
FERTTET b (k) q (i) pa (xi)q(Z|z1) (det T} o) ™ py(x)py (i

q(zklz)((l(t ]T Jo) %p()(z')(d(‘tJZT,JZ/)_S( D(xy)~
g z’]zA)(d(t/ To) 2 polz) (det JT Jy ) 3 (D(x)~1 — 1)
)4(

~ polz)q(z|z' ) (D(x) ' — 1)
PU(ZA)(J( '|lzp)(D(x') "1 = 1)
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Case Study: Latent Langevin Monte Carlo
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* We can use gradients to explore the landscape more efficiently
e Sample-level Langevin Monte Carlo (LMC)

T ~
Xpi1 = Xg + §Vx log pi(xi) + V7€, € ~N(0,1),

* is intractable because p.(x)=py4(x) is unknown

 Latent Langevin Monte Carlo (L2ZMC) is tractable w/ reparameterization!

-
7 —ZA+2T log pi () +\E €

T (z1) (det J, Jz 2 T
:Z;‘.—}—jvzl 1’ . ( ,) ] +%vzl()g1)()(ZA-)+\ﬁ'€

(2)

2 po(zy) (det /' Ju)
pa(X)

P/(x/\)

=2z — ;Vz log(D '(x;) — 1) + ET, log po(zr) + V7€, €~ N(0,1),

== '\7 Jog po(zy) + V7€

T
=2z, + =V,1
k 2 ()
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A Unified Framework for GAN Sampling
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* REP-GAN: an efficient sampling method for GANs (also work for WGAN)
* REP proposal that works for general latent dependent proposals
* Tractable MH ratio aggp(x’, x3)
* A practical latent proposal: L2ZMC

* It serves as a general recipe for GAN sampling, as we take previous
work as our special cases

Table 1: Comparison of sampling methods for GANs in terms of three effective
sampling mechanisms.

Method Rejection step Markov chain Latent gradient proposal
GAN X X X
DRS [2] v X X
MH-GAN [27| v v X
DDLS [5] X v v
REP-GAN (ours) v v v




Experiments on Synthetic Datasets

* Manifold learning of Swiss Roll
* Less discontinuous points
* More robust to step size
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Experiments on Synthetic Datasets

* Multi-modal Experiments of Mixture of
* Less missing modes
* More robust to step size

Gaussians
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Experiments on Real-world Datasets

* CIFAR-10 and CelebA with DCGAN and WGAN
* Clear improvement of sample quality

Table 2: Inception Scores of different sampling methods on CIFAR-10 and CelebA,
with the DCGAN and WGAN backbones.

Method CIFAR-10 ) CelebA

‘ DCGAN WGAN DCGAN WGAN
GAN 3.219  3.740 2332  2.788

DRS [2] 3.073  3.137  2.869 2.861

MH-GAN |27] 3.225  3.851 3.106 2.889

DDLS [5] 3.152  3.547 2534  2.862

REP-GAN (ours) 3.541 4.035 2.686 2.943




Experiments on Real-world Datasets

 CIFAR-10 and CelebA with DCGAN and WGAN

* Clear improvement of sample quality

 Significantly improved sample efficiency
e average acceptance ratio: 5% -> around 40%

Table 3: Average Inception Score (a) and acceptance ratio (b) vs. training epochs

with DCGAN on CIFAR-10.

(a) Inception Score (mean =+ std)

Epoch 20 21 22 23 24

GAN 2.482 £ 0.027 3.836 £ 0.046 3.154 &+ 0.014 3.383 £ 0.046 3.219 = 0.036
MH-GAN 2356 £ 0.023 3.891 £ 0.040 3.278 £ 0.033 3.458 £ 0.029 3.225 £ 0.029
DDLS 2.419 £ 0.021 3.332 £ 0.025 2.996 &+ 0.035 3.255 £ 0.045 3.152 = 0.028
REP-GAN 2.487 £ 0.019 3.954 + 0.046 3.294 £ 0.030 3.534 £ 0.035 3.541 +£ 0.038

(b) Average Acceptance Ratio (mean + std)

Epoch 20 21 22 23 24

MH-GAN  0.028 £ 0.143 0.053 £ 0.188 0.060 £ 0.199 0.021 £ 0.126 0.027 £ 0.141
REP-GAN 0.435 + 0.384 0.350 + 0.380 0.287 4+ 0.365 0.208 + 0.335 0.471 + 0.384




Takeaways

e GANSs: both D and G contain useful information to cultivate

 Variational inference: sampling methods can be used to further
bridge the variational distribution and the data distribution

 Sampling: low-dimensional latent space is easier to play around, and
enjoys better sample efficiency

* MCMC: transition reparameterization for implicit models (like GANSs)
can also be tractable
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For more details, please refer to our paper: https://arxiv.org/abs/2107.00352
More interesting papers @ PKU ZERO lab: https://zero-lab-pku.github.io/
Contact:

yifei_wang AT pku.edu.cn; yisen.wang AT pku.edu.cn
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