Yifei Wang

32 Vassar St, Cambridge, MA 02139, USA yifei_w@mit.edu • Google Scholar • https://yifeiwang77.com

WORKING	Massachusetts Institute of Technology (MIT), Cambridge, MA, USA			
EXPERIENCE	 Postdoc, Computer Science and Artificial Intelligence Laboratory (CSAIL) Advisor: Prof. Stefanie Jegelka 	Dec 2023 – Present		
EDUCATION	Peking University, Beijing, China			
	 Ph.D. in Applied Mathematics, School of Mathematical Sciences Advisors: Prof. Yisen Wang, Prof. Zhouchen Lin, Prof. Jiansheng Yang Thesis: Self-supervised Contrastive Learning: Theory and Method 	Sep 2017 – Jul 2023		
	Peking University, Beijing, China			
	 B.S. in Data Science, School of Mathematical Sciences 	Sep 2013 – Jul 2017		
	 B.A. in Philosophy (double degree), Department of Philosophy 	Sep 2014 – Jul 2017		
SELECTED HONORS & AND AWARDS	 Best Paper Award, ICML 2024 ICL Workshop 	2024		
	 Silver Best Paper Award, ICML 2021 AML Workshop 	2021		
	 Best Machine Learning Paper Award (sole, 1/685), ECML-PKDD 	2021		
	 Outstanding Ph.D. Dissertation Runner-Up Award, CAAI 	2024		
	 Excellent Graduate of Beijing Municipality 	2023		
	 Excellent Graduate of Peking University 	2023		
	 National Scholarship (twice) 	2021, 2022		
	 President Scholarship at Peking University 	2022		
RESEARCH INTERESTS	I am interested in developing efficient and robust algorithms for large-scale foundation models (generative models and discriminative models) and providing a deep understanding of the underlying principles.			
PUBLICATIONS	44 peer-reviewed publications (39 in NeurIPS, ICLR, and ICML); 28 as (co-)first author. >1k citations. * denotes shared first authorship.			
	Generative Models, Language Models, Self-correction, Reasoning I worked on understanding and improving the key functionalities and capabilities of generative models, including long-context understanding, self-correction, reasoning, and sampling.			
	Lizhe Fang*, Yifei Wang* et al. What is Wrong with Perplexity for Long-context Language Modeling? in ICLR 2025 .			
	I proposed a long-context perplexity measure that emphasizes long-context relevant tokens at training and evaluation, improving the benchmark scores on LongBench, LongEval, and RULER by up to 22%.			
	 Lizhe Fang*, Yifei Wang* et al. Rethinking Invariance in In-context Learning in ICLR 2025. We discovered an expressive invariant in-context learning scheme (InvICL) that achieves permutation invariance of in-context demonstrations while preserving autoregressive nature and full context awareness at the same time. 			
	 Chenheng Zhang, Mingqing Xiao, Yifei Wang et al. Tool Decoding: A Plug-and-Play Approach to Enhancing Language Models for Tool Usage in ICLR 2025. We proposed a simple training-free, plug-and-play constrained decoding scheme that significantly improves LLM performance at tool usa (a.g. it rivels CPT 4a with a 7B model). 			
	Yifei Wang, et al., A Theoretical Understanding of Self-Correction through In-context Alignment, in			
	 NeurIPS 2024. Best Paper Award at ICML 2024 Workshop on In-context Learning. I established the first rigorous understanding of LLMs' self-correction ability and develop a simple and efficient self-correction algorithm (CaC) that shows significant improvements across different tasks (e.g., BBO, AdvBench). 			
	 Yifei Wang, et al., A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training, in ICLR 2022. <i>Silver Best Paper at ICML 2021 AML Workshop</i>. I proposed to use adversarial learning as an alternative paradigm to maximum likelihood training of energy based models. 			

- I proposed to use adversarial learning as an alternative paradigm to maximum likelihood training of energy-based models (EBMs) and established its superior image generation quality on CIFAR-10.
- Yifei Wang, et al., Reparameterized Sampling for Generative Adversarial Networks, in ECML-PKDD 2021. *Best Machine Learning Paper Award (1/685)*.

- I developed a structure-aware MCMC sampling method for GANs that can leverage discriminators (akin to reward models) to guide and refine image generation at test time.
- Qixun Wang, Yifei Wang, Yisen Wang, and Xianghua Ying. Can In-context Learning Really Generalize to Out-of-distribution Tasks? in ICLR 2025.
- With controlled experiments, we found that in-context learning still happens only with in-domain tasks and hardly generalizes to novel OOD tasks. In other words, LLMs' in-context abilities are learned essentially through training data with likewise tasks.
- Xinyi Wu, Amir Ajorlou, **Yifei Wang**, Stefanie Jegelka, Ali Jadbabaie, **On the Role of Attention Masks** and LayerNorm in Transformers, in NeurIPS 2024.
- Ziyu Ye, Jiacheng Chen, Jonathan Light, **Yifei Wang** et al. **Reasoning in Reasoning: A Hierarchical Framework for Better and Faster Neural Theorem Proving. NeurIPS 2024 Workshop** on Mathematical Reasoning and AI.
- Qi Zhang, Tianqi Du, Haotian Huang, Yifei Wang, Yisen Wang, Look Ahead or Look Around? A Theoretical Comparison Between Autoregressive and Masked Pretraining, in ICML 2024.

Self-supervised Learning, Unsupervised Representation Learning

- *I led a coherent series of works for building principled understandings and algorithms for self-supervised representation learning (contrastive learning, masked autoencoders, multimodal learning, etc).*
- Zhuo Ouyang, Kaiwen Hu, Qi Zhang, Yifei Wang, and Yisen Wang. Projection Head is Secretly an Information Bottleneck. in ICLR 2025.
- We showed that projection heads serve as an information bottleneck that prevent features from collapsing toward the pretraining task (e.g. instance classification).
- Sharut Gupta*, Chenyu Wang*, Yifei Wang*, Tommi Jaakkola, Stefanie Jegelka, In-Context Symmetries: Self-Supervised Learning through Contextual World Models, in NeurIPS 2024. Oral Presentation (top 4) at NeurIPS 2024 SSL Workshop and featured by MIT
- Yifei Wang*, Kaiwen Hu*, Sharut Gupta, Ziyu Ye, Yisen Wang, Stefanie Jegelka, Understanding the Role of Equivariance in Self-supervised Learning, in NeurIPS 2024.
- Yifei Wang*, Jizhe Zhang*, Yisen Wang, Do Generated Data Always Help Contrastive Learning?, in ICLR 2024.
- Tianqi Du*, **Yifei Wang***, Yisen Wang, **On the Role of Discrete Tokenization in Visual Representation** Learning, in ICLR 2024. Spotlight Representation
- Qi Zhang*, Yifei Wang*, Yisen Wang, On the Generalization of Multi-modal Contrastive Learning, in ICML 2023.
- Jingyi Cui*, Weiran Huang*, Yifei Wang*, Yisen Wang, Rethinking Weak Supervision in Helping Contrastive Representation Learning, in ICML 2023.
- Yifei Wang*, Qi Zhang*, Tianqi Du, Jiansheng Yang, Zhouchen Lin, Yisen Wang, A Message Passing Perspective on Learning Dynamics of Contrastive Learning, in ICLR 2023.
- Zhijian Zhuo*, Yifei Wang*, Yisen Wang, Towards a Unified Theoretical Understanding of Non-contrastive Learning via Rank Differential Mechanism, in ICLR 2023.
- Qi Zhang*, Yifei Wang*, Yisen Wang, How Mask Matters: Towards Theoretical Understandings of Masked Autoencoders, in NeurIPS 2022. Spotlight Presentation.
- Yifei Wang*, Qi Zhang*, Yisen Wang, Jiansheng Yang, Zhouchen Lin, Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap, in ICLR 2021.
- Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang, Zhouchen Lin, Residual Relaxation for Multi-view Representation Learning, in NeurIPS 2021.

Algorithmic Robustness, Distribution Shifts, AI Safety

- I worked on principled algorithms to improve the robustness of foundation models against adversarial attacks and natural distribution shifts, during which I built SoTA robust SSL models (ICLR'23).
- Zeming Wei, **Yifei Wang** et al. **Jailbreak and guard aligned language models with only few in-context** demonstrations. arXiv:2310.06387. *Cited over 160 times. It was featured and scaled up in Anthropic's research blog, where it successfully jailbroke prominent LLMs including GPT and Claude.*
- Qixun Wang, **Yifei Wang**, Yisen Wang, Xianghua Ying, **Dissecting the Failure of Invariant Learning on Graphs**, in **NeurIPS 2024**.
- Lin Li, Yifei Wang, Chawin Sitawarin, Michael W. Spratling, OODRobustBench: A Benchmark and Large-scale Analysis of Adversarial Robustness under Distribution Shift, in ICML 2024.

- Yihao Zhang, Hangzhou He, Jingyu Zhu, Huanran Chen, Yifei Wang, Zeming Wei, On the Duality Between Sharpness-Aware Minimization and Adversarial Training, in ICML 2024.
- Yifei Wang*, Liangchen Li*, Yisen Wang, Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective, in NeurIPS 2023.
- Ang Li*, Yifei Wang*, Yisen Wang, Adversarial Examples Are Not Real Features, in NeurIPS 2023.
- Zeming Wei, Yifei Wang, Yiwen Guo, Yisen Wang, CFA: Class-wise Calibrated Fair Adversarial Training, in CVPR 2023.
- Rundong Luo*, **Yifei Wang***, Yisen Wang, **Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning**, in **ICLR 2023**.
- Shiji Xin, **Yifei Wang**, Jingtong Su, Yisen Wang, **On the Connection between Invariant Learning and** Adversarial Training for OOD Generalization, in AAAI 2023. *Oral Presentation*.
- Qixun Wang*, Yifei Wang*, Hong Zhu, Yisen Wang, Improving Out-of-distribution Robustness by Adversarial Training with Structured Priors, in NeurIPS 2022. *Spotlight Presentation*.
- Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, Yisen Wang, When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture, in NeurIPS 2022. Spotlight Presentation.

Interpretability

- I leveraged statistical perspectives (e.g., identifiability) to develop intrinsically interpretable foundation models (ICLR'24 and NeurIPS'23) and discover their practical benefits (ICLR'25, EMNLP'24, and NeurIPS-W'24).
- Qi Zhang*, Yifei Wang*, et al. Beyond Interpretability: The Gains of Feature Monosemanticity on Model Robustness. in ICLR 2025.
- We show that feature monosemanticity brought by SAEs (extrinsic methods) and NCL (intrinsic methods) can significantly
 improve model robustness under multiple scenarios.
- Hanqi Yan, Yanzheng Xiang, Guangyi Chen, Yifei Wang, Lin Gui, and Yulan He, Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective, in EMNLP 2024.
- Hanqi Yan, Yulan He, **Yifei Wang** (corresponding author). **The Multi-faceted Monosemanticity in Multimodal Representations**. **NeurIPS 2024 Workshop** on Responsibly Building the Next Generation of Multimodal Foundational Models.
- Yifei Wang*, Qi Zhang*, Yaoyu Guo, Yisen Wang, Non-negative Contrastive Learning, in ICLR 2024.
- Qi Zhang*, Yifei Wang*, Yisen Wang, Tri-contrastive Learning: Identifiable Representation Learning with Automatic Discovery of Feature Importance, in NeurIPS 2023.
- Jingyi Cui*, Weiran Huang*, Yifei Wang, Yisen Wang. AggNCE: Asymptotically Identifiable Contrastive Learning. *Oral Presentation* at NeurIPS 2022 Workshop on Self-supervised Learning.

Graph Representation Learning, Invariant and Equivariant Learning

- *I* contributed to several key methodologies in building more powerful, expressive, and robust graph representation learning algorithms, including diffusion process, spectral filtering, and canonicalization.
- George Ma*, **Yifei Wang***, Derek Lim, Stefanie Jegelka, Yisen Wang, **A Canonicalization Perspective on Invariant and Equivariant Learning**, in **NeurIPS 2024**.
- George Ma*, **Yifei Wang***, Yisen Wang, **Laplacian Canonization: A Minimalist Approach to Sign and Basis Invariant Spectral Embedding**, in **NeurIPS**.
- Xiaojun Guo*, Yifei Wang*, Zeming Wei, Yisen Wang, Architecture Matters: Uncovering Implicit Mechanisms in Graph Contrastive Learning, in NeurIPS 2023.
- Mingjie Li, Yifei Wang, Yisen Wang, Zhouchen Lin, Unbiased Stochastic Proximal Solver for Graph Neural Networks with Equilibrium States, in ICLR 2023.
- Qi Chen, Yifei Wang, Yisen Wang, Zhouchen Lin, Optimization-induced Graph Implicit Nonlinear Diffusion, in ICML 2022.
- Mingjie Li, Xiaojun Guo, **Yifei Wang**, Yisen Wang, Zhouchen Lin, **G**²**CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters**, in **ICML 2022**.
- Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin, Dissecting the Diffusion Process in Linear Graph Convolutional Networks, in NeurIPS 2021.

SKILLS	 Programming Languages: Python (proficient), C, MATLAB, R Deep Learning Frameworks: PyTorch (proficient), TensorFlow, JAX, Keras Distributed Training: Extensive experience with multi-node, multi-GPU training using up GPUs, the PyTorch Distributed Data Parallel (DDP) framework, and the Slurm platform. 	p to 64 A100
INVITED TALKS	 Principles of Foundation Models, CDS at New York University 	Feb 2025
	 Principles of Foundation Models, Boston University 	Jan 2025
	Principles of Foundation Models, John Hopkins University	Dec 2024
	 Towards Test-time Self-supervised Learning, Guest Lecture at Boston College 	Nov 2024
	A Principled Path to Safe Foundation Models, MIT ML Tea Seminar	Oct 2024
	 Building Safe Foundation Models from Principled Understanding, New York University 	Sep 2024
	 Reimagining Self-supervised Learning with Context, Princeton University 	Aug 2024
	 Non-negative Contrastive Learning, Cohere AI 	Jun 2024
	 Self-supervised Learning of Identifiable Features, TU Munich 	May 2024
	 Non-negative Contrastive Learning, MIT LIDS Tea Seminar 	Apr 2024
	 Understanding and Applying Self-supervised Learning via Graph, Deep Potential 	2023
	 Towards Theoretical Foundations of Self-Supervised Learning, KAIST 	2022
	 Towards Truly Unlearnable Examples for Data Privacy, Chinese Academy of Science 	2022
	• Reparameterized Sampling for GANs, Beijing Academy of Artificial Intelligence (BAAI)	2021
	 Reparameterized Sampling for GANs, Plenary Talk at ECML-PKDD 2021 	2021
PROFESSIONAL	 Area Chair, ICLR 2024, ICLR 2025 	2024, 2025
SERVICE	 Organizer, NeurIPS 2024 Workshop on Red Teaming GenAI 	2024
	 Organizer, MIT ML Tea Seminar 	2024
	Reviewer, NeurIPS, ICML, AISTATS, AAAI, LoG, ECML-PKDD, CVPR, ICCV, ACL	2021 - 2024